Whisper Tiny af

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2862
  • Wer: 49.5238
  • Cer: 21.6345

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.04
  • training_steps: 600

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9449 3.0017 100 1.3743 55.2381 21.4644
0.4604 6.0033 200 1.2738 51.1515 20.4000
0.2774 9.005 300 1.2614 49.8528 20.9014
0.1969 12.0067 400 1.2717 50.2857 21.6315
0.1467 15.0083 500 1.2801 49.7662 21.5113
0.1375 18.01 600 1.2862 49.5238 21.6345

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Citation

Please cite the model using the following BibTeX entry:

@misc{deepdml/whisper-tiny-af-fleurs-norm,
      title={Fine-tuned Whisper tiny ASR model for speech recognition in Afrikaans},
      author={Jimenez, David},
      howpublished={\url{https://huggingface.co/deepdml/whisper-tiny-af-fleurs-norm}},
      year={2026}
    }
Downloads last month
2
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for deepdml/whisper-tiny-af-fleurs-norm

Finetuned
(1690)
this model

Dataset used to train deepdml/whisper-tiny-af-fleurs-norm

Evaluation results