ARC-Easy_Llama-3.2-1B-blvojtf1

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6796
  • Model Preparation Time: 0.006
  • Mdl: 2203.5395
  • Accumulated Loss: 1527.3772
  • Correct Preds: 389.0
  • Total Preds: 570.0
  • Accuracy: 0.6825
  • Correct Gen Preds: 327.0
  • Gen Accuracy: 0.5737
  • Correct Gen Preds 32: 62.0
  • Correct Preds 32: 98.0
  • Total Labels 32: 158.0
  • Accuracy 32: 0.6203
  • Gen Accuracy 32: 0.3924
  • Correct Gen Preds 33: 95.0
  • Correct Preds 33: 105.0
  • Total Labels 33: 152.0
  • Accuracy 33: 0.6908
  • Gen Accuracy 33: 0.625
  • Correct Gen Preds 34: 100.0
  • Correct Preds 34: 108.0
  • Total Labels 34: 142.0
  • Accuracy 34: 0.7606
  • Gen Accuracy 34: 0.7042
  • Correct Gen Preds 35: 70.0
  • Correct Preds 35: 78.0
  • Total Labels 35: 118.0
  • Accuracy 35: 0.6610
  • Gen Accuracy 35: 0.5932
  • Correct Gen Preds 36: 0.0
  • Correct Preds 36: 0.0
  • Total Labels 36: 0.0
  • Accuracy 36: 0.0
  • Gen Accuracy 36: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 112
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Mdl Accumulated Loss Correct Preds Total Preds Accuracy Correct Gen Preds Gen Accuracy Correct Gen Preds 32 Correct Preds 32 Total Labels 32 Accuracy 32 Gen Accuracy 32 Correct Gen Preds 33 Correct Preds 33 Total Labels 33 Accuracy 33 Gen Accuracy 33 Correct Gen Preds 34 Correct Preds 34 Total Labels 34 Accuracy 34 Gen Accuracy 34 Correct Gen Preds 35 Correct Preds 35 Total Labels 35 Accuracy 35 Gen Accuracy 35 Correct Gen Preds 36 Correct Preds 36 Total Labels 36 Accuracy 36 Gen Accuracy 36
No log 0 0 1.5354 0.006 1262.6022 875.1692 172.0 570.0 0.3018 170.0 0.2982 154.0 154.0 158.0 0.9747 0.9747 0.0 0.0 152.0 0.0 0.0 15.0 17.0 142.0 0.1197 0.1056 1.0 1.0 118.0 0.0085 0.0085 0.0 0.0 0.0 0.0 0.0
1.3822 1.0 1 1.5354 0.006 1262.6022 875.1692 172.0 570.0 0.3018 170.0 0.2982 154.0 154.0 158.0 0.9747 0.9747 0.0 0.0 152.0 0.0 0.0 15.0 17.0 142.0 0.1197 0.1056 1.0 1.0 118.0 0.0085 0.0085 0.0 0.0 0.0 0.0 0.0
1.3877 2.0 2 2.3794 0.006 1956.6844 1356.2703 153.0 570.0 0.2684 153.0 0.2684 0.0 0.0 158.0 0.0 0.0 152.0 152.0 152.0 1.0 1.0 1.0 1.0 142.0 0.0070 0.0070 0.0 0.0 118.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.1356 3.0 3 1.4237 0.006 1170.7407 811.4956 203.0 570.0 0.3561 203.0 0.3561 89.0 89.0 158.0 0.5633 0.5633 114.0 114.0 152.0 0.75 0.75 0.0 0.0 142.0 0.0 0.0 0.0 0.0 118.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8074 4.0 4 1.6417 0.006 1350.0078 935.7541 216.0 570.0 0.3789 216.0 0.3789 155.0 155.0 158.0 0.9810 0.9810 6.0 6.0 152.0 0.0395 0.0395 38.0 38.0 142.0 0.2676 0.2676 17.0 17.0 118.0 0.1441 0.1441 0.0 0.0 0.0 0.0 0.0
0.3151 5.0 5 1.1711 0.006 963.0449 667.5319 358.0 570.0 0.6281 351.0 0.6158 105.0 108.0 158.0 0.6835 0.6646 68.0 71.0 152.0 0.4671 0.4474 100.0 100.0 142.0 0.7042 0.7042 78.0 79.0 118.0 0.6695 0.6610 0.0 0.0 0.0 0.0 0.0
0.0313 6.0 6 1.8008 0.006 1480.8473 1026.4451 384.0 570.0 0.6737 333.0 0.5842 68.0 99.0 158.0 0.6266 0.4304 91.0 101.0 152.0 0.6645 0.5987 101.0 108.0 142.0 0.7606 0.7113 73.0 76.0 118.0 0.6441 0.6186 0.0 0.0 0.0 0.0 0.0
0.0007 7.0 7 2.6796 0.006 2203.5395 1527.3772 389.0 570.0 0.6825 327.0 0.5737 62.0 98.0 158.0 0.6203 0.3924 95.0 105.0 152.0 0.6908 0.625 100.0 108.0 142.0 0.7606 0.7042 70.0 78.0 118.0 0.6610 0.5932 0.0 0.0 0.0 0.0 0.0
0.0 8.0 8 3.2573 0.006 2678.6154 1856.6747 382.0 570.0 0.6702 317.0 0.5561 56.0 98.0 158.0 0.6203 0.3544 99.0 106.0 152.0 0.6974 0.6513 95.0 104.0 142.0 0.7324 0.6690 67.0 74.0 118.0 0.6271 0.5678 0.0 0.0 0.0 0.0 0.0
0.0 9.0 9 3.6049 0.006 2964.4270 2054.7842 378.0 570.0 0.6632 308.0 0.5404 51.0 95.0 158.0 0.6013 0.3228 101.0 106.0 152.0 0.6974 0.6645 91.0 103.0 142.0 0.7254 0.6408 65.0 74.0 118.0 0.6271 0.5508 0.0 0.0 0.0 0.0 0.0
0.0 10.0 10 3.8133 0.006 3135.8227 2173.5867 376.0 570.0 0.6596 300.0 0.5263 46.0 94.0 158.0 0.5949 0.2911 102.0 108.0 152.0 0.7105 0.6711 88.0 103.0 142.0 0.7254 0.6197 64.0 71.0 118.0 0.6017 0.5424 0.0 0.0 0.0 0.0 0.0
0.0 11.0 11 3.9897 0.006 3280.8607 2274.1194 374.0 570.0 0.6561 292.0 0.5123 43.0 94.0 158.0 0.5949 0.2722 103.0 109.0 152.0 0.7171 0.6776 85.0 102.0 142.0 0.7183 0.5986 61.0 69.0 118.0 0.5847 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 12.0 12 4.0979 0.006 3369.8531 2335.8042 371.0 570.0 0.6509 283.0 0.4965 39.0 93.0 158.0 0.5886 0.2468 101.0 107.0 152.0 0.7039 0.6645 81.0 103.0 142.0 0.7254 0.5704 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 13.0 13 4.1798 0.006 3437.2348 2382.5096 374.0 570.0 0.6561 284.0 0.4982 39.0 94.0 158.0 0.5949 0.2468 101.0 109.0 152.0 0.7171 0.6645 82.0 103.0 142.0 0.7254 0.5775 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 14.0 14 4.2962 0.006 3532.8950 2448.8162 370.0 570.0 0.6491 281.0 0.4930 38.0 91.0 158.0 0.5759 0.2405 100.0 109.0 152.0 0.7171 0.6579 81.0 102.0 142.0 0.7183 0.5704 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 15.0 15 4.3080 0.006 3542.6472 2455.5760 371.0 570.0 0.6509 281.0 0.4930 37.0 91.0 158.0 0.5759 0.2342 99.0 110.0 152.0 0.7237 0.6513 83.0 102.0 142.0 0.7183 0.5845 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 16.0 16 4.3532 0.006 3579.7884 2481.3203 372.0 570.0 0.6526 281.0 0.4930 36.0 92.0 158.0 0.5823 0.2278 100.0 109.0 152.0 0.7171 0.6579 83.0 103.0 142.0 0.7254 0.5845 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 17.0 17 4.3767 0.006 3599.1354 2494.7306 372.0 570.0 0.6526 280.0 0.4912 35.0 92.0 158.0 0.5823 0.2215 100.0 110.0 152.0 0.7237 0.6579 83.0 102.0 142.0 0.7183 0.5845 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 18.0 18 4.4285 0.006 3641.7234 2524.2503 371.0 570.0 0.6509 278.0 0.4877 36.0 91.0 158.0 0.5759 0.2278 99.0 110.0 152.0 0.7237 0.6513 81.0 102.0 142.0 0.7183 0.5704 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 19.0 19 4.4736 0.006 3678.7926 2549.9447 371.0 570.0 0.6509 277.0 0.4860 35.0 91.0 158.0 0.5759 0.2215 100.0 110.0 152.0 0.7237 0.6579 80.0 102.0 142.0 0.7183 0.5634 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 20.0 20 4.4894 0.006 3691.8132 2558.9699 370.0 570.0 0.6491 276.0 0.4842 35.0 90.0 158.0 0.5696 0.2215 98.0 110.0 152.0 0.7237 0.6447 81.0 102.0 142.0 0.7183 0.5704 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 21.0 21 4.4970 0.006 3698.0504 2563.2932 371.0 570.0 0.6509 277.0 0.4860 35.0 91.0 158.0 0.5759 0.2215 98.0 110.0 152.0 0.7237 0.6447 82.0 102.0 142.0 0.7183 0.5775 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 22.0 22 4.5302 0.006 3725.3769 2582.2345 369.0 570.0 0.6474 276.0 0.4842 34.0 88.0 158.0 0.5570 0.2152 99.0 110.0 152.0 0.7237 0.6513 82.0 103.0 142.0 0.7254 0.5775 61.0 68.0 118.0 0.5763 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 23.0 23 4.5179 0.006 3715.2392 2575.2076 367.0 570.0 0.6439 277.0 0.4860 35.0 89.0 158.0 0.5633 0.2215 100.0 110.0 152.0 0.7237 0.6579 82.0 102.0 142.0 0.7183 0.5775 60.0 66.0 118.0 0.5593 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 24.0 24 4.5215 0.006 3718.1928 2577.2548 371.0 570.0 0.6509 277.0 0.4860 34.0 91.0 158.0 0.5759 0.2152 98.0 110.0 152.0 0.7237 0.6447 84.0 102.0 142.0 0.7183 0.5915 61.0 68.0 118.0 0.5763 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 25.0 25 4.5525 0.006 3743.7136 2594.9445 367.0 570.0 0.6439 278.0 0.4877 34.0 89.0 158.0 0.5633 0.2152 99.0 110.0 152.0 0.7237 0.6513 84.0 102.0 142.0 0.7183 0.5915 61.0 66.0 118.0 0.5593 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 26.0 26 4.5539 0.006 3744.8645 2595.7423 369.0 570.0 0.6474 278.0 0.4877 35.0 90.0 158.0 0.5696 0.2215 99.0 110.0 152.0 0.7237 0.6513 83.0 102.0 142.0 0.7183 0.5845 61.0 67.0 118.0 0.5678 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 27.0 27 4.5578 0.006 3748.0692 2597.9636 368.0 570.0 0.6456 277.0 0.4860 35.0 89.0 158.0 0.5633 0.2215 98.0 110.0 152.0 0.7237 0.6447 84.0 103.0 142.0 0.7254 0.5915 60.0 66.0 118.0 0.5593 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 28.0 28 4.5636 0.006 3752.8202 2601.2567 368.0 570.0 0.6456 279.0 0.4895 36.0 90.0 158.0 0.5696 0.2278 99.0 110.0 152.0 0.7237 0.6513 83.0 102.0 142.0 0.7183 0.5845 61.0 66.0 118.0 0.5593 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 29.0 29 4.5600 0.006 3749.8841 2599.2216 369.0 570.0 0.6474 278.0 0.4877 34.0 89.0 158.0 0.5633 0.2152 99.0 110.0 152.0 0.7237 0.6513 84.0 103.0 142.0 0.7254 0.5915 61.0 67.0 118.0 0.5678 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 30.0 30 4.5483 0.006 3740.2175 2592.5212 370.0 570.0 0.6491 277.0 0.4860 34.0 90.0 158.0 0.5696 0.2152 98.0 110.0 152.0 0.7237 0.6447 85.0 103.0 142.0 0.7254 0.5986 60.0 67.0 118.0 0.5678 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 31.0 31 4.5859 0.006 3771.1699 2613.9758 369.0 570.0 0.6474 277.0 0.4860 35.0 90.0 158.0 0.5696 0.2215 99.0 110.0 152.0 0.7237 0.6513 82.0 103.0 142.0 0.7254 0.5775 61.0 66.0 118.0 0.5593 0.5169 0.0 0.0 0.0 0.0 0.0
0.0 32.0 32 4.5906 0.006 3775.0048 2616.6339 367.0 570.0 0.6439 278.0 0.4877 34.0 89.0 158.0 0.5633 0.2152 99.0 110.0 152.0 0.7237 0.6513 86.0 103.0 142.0 0.7254 0.6056 59.0 65.0 118.0 0.5508 0.5 0.0 0.0 0.0 0.0 0.0
0.0 33.0 33 4.5403 0.006 3733.6585 2587.9749 373.0 570.0 0.6544 282.0 0.4947 35.0 92.0 158.0 0.5823 0.2215 99.0 110.0 152.0 0.7237 0.6513 86.0 103.0 142.0 0.7254 0.6056 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 34.0 34 4.5964 0.006 3779.8051 2619.9612 368.0 570.0 0.6456 278.0 0.4877 35.0 90.0 158.0 0.5696 0.2215 99.0 110.0 152.0 0.7237 0.6513 84.0 101.0 142.0 0.7113 0.5915 60.0 67.0 118.0 0.5678 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 35.0 35 4.5792 0.006 3765.6775 2610.1687 369.0 570.0 0.6474 279.0 0.4895 34.0 91.0 158.0 0.5759 0.2152 100.0 110.0 152.0 0.7237 0.6579 85.0 103.0 142.0 0.7254 0.5986 60.0 65.0 118.0 0.5508 0.5085 0.0 0.0 0.0 0.0 0.0
0.0 36.0 36 4.5957 0.006 3779.2287 2619.5617 371.0 570.0 0.6509 283.0 0.4965 36.0 91.0 158.0 0.5759 0.2278 100.0 110.0 152.0 0.7237 0.6579 85.0 102.0 142.0 0.7183 0.5986 62.0 68.0 118.0 0.5763 0.5254 0.0 0.0 0.0 0.0 0.0
0.0 37.0 37 4.5726 0.006 3760.2223 2606.3875 370.0 570.0 0.6491 283.0 0.4965 36.0 90.0 158.0 0.5696 0.2278 101.0 110.0 152.0 0.7237 0.6645 85.0 103.0 142.0 0.7254 0.5986 61.0 67.0 118.0 0.5678 0.5169 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
6
Safetensors
Model size
1B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for donoway/ARC-Easy_Llama-3.2-1B-blvojtf1

Finetuned
(841)
this model

Evaluation results