Gemma-7B SQL Expert (Fine-Tuned)

Fine-tuned version of Google's Gemma-7B model for converting natural language questions to SQL queries.

Model Details

  • Base Model: google/gemma-7b
  • Fine-tuned by: ESTU Research Team (Kulalı, Aydın, Alhan, Fidan)
  • Institution: Eskisehir Technical University
  • Project: TÜBİTAK 2209-A Research
  • License: MIT
  • Language: English
  • Task: Natural Language to SQL Translation

Performance

  • Execution Accuracy: 76.0%
  • Exact Match: 65.4%
  • Average Latency: 500ms
  • Model Size: 14.1 GB (full) / 183 MB (LoRA adapters)

Training Details

Training Data

Training Configuration

{
  "base_model": "google/gemma-7b",
  "method": "LoRA",
  "rank": 16,
  "alpha": 32,
  "dropout": 0.05,
  "target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"],
  "epochs": 3,
  "batch_size": 8,
  "learning_rate": 1.5e-4,
  "training_time": "10.8 hours (A100 GPU)"
}

Training Results

Epoch 1: Loss 1.456 | Val Loss 1.512 | Accuracy 68.2%
Epoch 2: Loss 0.521 | Val Loss 0.589 | Accuracy 72.8%
Epoch 3: Loss 0.234 | Val Loss 0.267 | Accuracy 76.0%

Usage

Installation

pip install transformers torch

Quick Start

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("estu-research/gemma-7b-sql-ft")
tokenizer = AutoTokenizer.from_pretrained("estu-research/gemma-7b-sql-ft")

# Example query
question = """
Schema: CREATE TABLE customers (customerNumber INT, customerName VARCHAR(50), country VARCHAR(50));
Question: List all customers from France
"""

inputs = tokenizer(question, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256)
sql = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(sql)
# Output: SELECT * FROM customers WHERE country = 'France';

Advanced Usage with Pipeline

from transformers import pipeline

pipe = pipeline("text-generation", model="estu-research/gemma-7b-sql-ft")

result = pipe(
    "Schema: CREATE TABLE products (productName VARCHAR, price DECIMAL);\nQuestion: Show top 10 expensive products",
    max_new_tokens=200,
    temperature=0.1
)
print(result[0]['generated_text'])

Example Queries

Natural Language Generated SQL
List top 5 customers by sales SELECT customerName, SUM(amount) as total FROM customers JOIN orders USING(customerId) GROUP BY customerId ORDER BY total DESC LIMIT 5;
Show products never ordered SELECT p.productName FROM products p LEFT JOIN orderDetails od ON p.productCode = od.productCode WHERE od.productCode IS NULL;
Total revenue by country SELECT country, SUM(amount) as revenue FROM customers JOIN orders USING(customerId) GROUP BY country ORDER BY revenue DESC;

Comparison with Other Models

Model Accuracy Latency Cost
Gemma-7B (FT) 76.0% 500ms Free
Llama-3-8B (FT) 78.2% 450ms Free
GPT-4o-mini (FT) 97.8% 800ms $0.30/1K
GPT-3.5 Turbo 78.9% 500ms $0.05/1K

Limitations

  • Trained primarily on sales database schema
  • May struggle with very complex nested queries
  • Best performance on English language queries
  • Requires GPU for optimal inference speed

Intended Use

  • Primary: Natural language to SQL translation for analytics
  • Secondary: SQL query assistance and education
  • Not For: Production databases without query validation

Citation

@misc{gemma7b-sql-ft,
  title={Gemma-7B SQL Expert: Fine-Tuned Model for Text-to-SQL},
  author={Kulalı and Aydın and Alhan and Fidan},
  institution={Eskisehir Technical University},
  year={2024},
  url={https://huggingface.co/estu-research/gemma-7b-sql-ft}
}

Links

Acknowledgments

This work was supported by TÜBİTAK 2209-A Research Grant at Eskisehir Technical University.

License

MIT License - See LICENSE file for details

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for estu-research/gemma-7b-sql-ft

Base model

google/gemma-7b
Finetuned
(364)
this model

Dataset used to train estu-research/gemma-7b-sql-ft