Gemma-7B SQL Expert (Fine-Tuned)
Fine-tuned version of Google's Gemma-7B model for converting natural language questions to SQL queries.
Model Details
- Base Model: google/gemma-7b
- Fine-tuned by: ESTU Research Team (Kulalı, Aydın, Alhan, Fidan)
- Institution: Eskisehir Technical University
- Project: TÜBİTAK 2209-A Research
- License: MIT
- Language: English
- Task: Natural Language to SQL Translation
Performance
- Execution Accuracy: 76.0%
- Exact Match: 65.4%
- Average Latency: 500ms
- Model Size: 14.1 GB (full) / 183 MB (LoRA adapters)
Training Details
Training Data
- Dataset: estu-research/sql-training-dataset
- Examples: 1,000+ natural language to SQL pairs
- Domain: Sales database queries (customers, orders, products, employees)
Training Configuration
{
"base_model": "google/gemma-7b",
"method": "LoRA",
"rank": 16,
"alpha": 32,
"dropout": 0.05,
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"],
"epochs": 3,
"batch_size": 8,
"learning_rate": 1.5e-4,
"training_time": "10.8 hours (A100 GPU)"
}
Training Results
Epoch 1: Loss 1.456 | Val Loss 1.512 | Accuracy 68.2%
Epoch 2: Loss 0.521 | Val Loss 0.589 | Accuracy 72.8%
Epoch 3: Loss 0.234 | Val Loss 0.267 | Accuracy 76.0%
Usage
Installation
pip install transformers torch
Quick Start
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("estu-research/gemma-7b-sql-ft")
tokenizer = AutoTokenizer.from_pretrained("estu-research/gemma-7b-sql-ft")
# Example query
question = """
Schema: CREATE TABLE customers (customerNumber INT, customerName VARCHAR(50), country VARCHAR(50));
Question: List all customers from France
"""
inputs = tokenizer(question, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256)
sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(sql)
# Output: SELECT * FROM customers WHERE country = 'France';
Advanced Usage with Pipeline
from transformers import pipeline
pipe = pipeline("text-generation", model="estu-research/gemma-7b-sql-ft")
result = pipe(
"Schema: CREATE TABLE products (productName VARCHAR, price DECIMAL);\nQuestion: Show top 10 expensive products",
max_new_tokens=200,
temperature=0.1
)
print(result[0]['generated_text'])
Example Queries
| Natural Language | Generated SQL |
|---|---|
| List top 5 customers by sales | SELECT customerName, SUM(amount) as total FROM customers JOIN orders USING(customerId) GROUP BY customerId ORDER BY total DESC LIMIT 5; |
| Show products never ordered | SELECT p.productName FROM products p LEFT JOIN orderDetails od ON p.productCode = od.productCode WHERE od.productCode IS NULL; |
| Total revenue by country | SELECT country, SUM(amount) as revenue FROM customers JOIN orders USING(customerId) GROUP BY country ORDER BY revenue DESC; |
Comparison with Other Models
| Model | Accuracy | Latency | Cost |
|---|---|---|---|
| Gemma-7B (FT) | 76.0% | 500ms | Free |
| Llama-3-8B (FT) | 78.2% | 450ms | Free |
| GPT-4o-mini (FT) | 97.8% | 800ms | $0.30/1K |
| GPT-3.5 Turbo | 78.9% | 500ms | $0.05/1K |
Limitations
- Trained primarily on sales database schema
- May struggle with very complex nested queries
- Best performance on English language queries
- Requires GPU for optimal inference speed
Intended Use
- Primary: Natural language to SQL translation for analytics
- Secondary: SQL query assistance and education
- Not For: Production databases without query validation
Citation
@misc{gemma7b-sql-ft,
title={Gemma-7B SQL Expert: Fine-Tuned Model for Text-to-SQL},
author={Kulalı and Aydın and Alhan and Fidan},
institution={Eskisehir Technical University},
year={2024},
url={https://huggingface.co/estu-research/gemma-7b-sql-ft}
}
Links
- GitHub: Japyh/llm-based-dbms
- Research Paper: docs/research_paper_draft.md
- Dataset: estu-research/sql-training-dataset
- Organization: estu-research
Acknowledgments
This work was supported by TÜBİTAK 2209-A Research Grant at Eskisehir Technical University.
License
MIT License - See LICENSE file for details
Model tree for estu-research/gemma-7b-sql-ft
Base model
google/gemma-7b