gemma-3-tw-270m / README.md
lianghsun's picture
Update README.md
f5d7a26 verified
metadata
license: gemma
datasets:
  - lianghsun/fineweb-edu-zhtw
  - HuggingFaceFW/fineweb-edu
language:
  - zh
  - en
metrics:
  - perplexity
base_model:
  - google/gemma-3-270m
library_name: transformers
tags:
  - Taiwan
  - ROC
  - zhtw
  - Twinkle.AI
pipeline_tag: text-generation
model-index:
  - name: gemma-3-270m-tw
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          type: HuggingFaceFW/fineweb-edu
          name: fine-web-edu-10BT
        metrics:
          - name: Perplexity
            type: perplexity
            value: 24.312
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          type: lianghsun/fineweb-edu-zhtw
          name: fineweb-edu-zhtw
        metrics:
          - name: Perplexity
            type: perplexity
            value: 31.473

Model Card for gemma-3-270m-tw

TBA w/ ❤️ 18213986-cf07-4208-935c-8bf6206a1d25

Model Details

Model Description

Model Sources

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors

Liang Hsun Huang

Model Card Contact

Liang Hsun Huang