TextEmbedding3SmallSentimentHead
In case you needed a sentiment analysis classifier on top of embeddings from OpenAI embeddings model.
Model Description
- What this is: A compact PyTorch classifier head trained on top of
text-embedding-3-small(1536-dim) to predict sentiment: negative, neutral, positive. - Data: Preprocessed from the Kaggle Sentiment Analysis Dataset.
- Metrics (val): F1 macro β 0.89, Accuracy β 0.89 on a held-out validation split.
- Architecture: Simple MLP head (256 hidden units, dropout 0.2), trained for 5 epochs with Adam.
Input/Output
- Input: Float32 tensor of shape
[batch, 1536](OpenAI text-embedding-3-small embeddings). - Output: Logits over 3 classes. Argmax β {0: negative, 1: neutral, 2: positive}.
Usage
from transformers import AutoModel
import torch
# Load model
model = AutoModel.from_pretrained(
"marcovise/TextEmbedding3SmallSentimentHead",
trust_remote_code=True
).eval()
# Your 1536-dim OpenAI embeddings
embeddings = torch.randn(4, 1536) # batch of 4 examples
# Predict sentiment
with torch.no_grad():
logits = model(inputs_embeds=embeddings)["logits"] # [batch, 3]
predictions = logits.argmax(dim=1) # [batch]
# 0=negative, 1=neutral, 2=positive
print(predictions) # tensor([1, 0, 2, 1])
Training Details
- Training data: Kaggle Sentiment Analysis Dataset
- Preprocessing: Text β OpenAI embeddings β 3-class labels {negative: 0.0, neutral: 0.5, positive: 1.0}
- Architecture: 1536 β 256 β ReLU β Dropout(0.2) β 3 classes
- Optimizer: Adam (lr=1e-3, weight_decay=1e-4)
- Loss: CrossEntropyLoss with label smoothing (0.05)
- Epochs: 5
Intended Use
- Quick, lightweight sentiment classification for short text once embeddings are available.
- Works well for general sentiment analysis tasks similar to the training distribution.
Limitations
- Trained on a specific sentiment dataset; may have domain bias.
- Requires OpenAI text-embedding-3-small embeddings as input.
- Not safety-critical; evaluate before production use.
- May reflect biases present in the training data.
License
MIT
- Downloads last month
- 31