vit-base-patch16-224-7class224

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0078
  • Train Accuracy: 0.9540
  • Train Top-3-accuracy: 0.9960
  • Validation Loss: 0.1065
  • Validation Accuracy: 0.9569
  • Validation Top-3-accuracy: 0.9963
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
0.6954 0.6170 0.9295 0.3090 0.7653 0.9734 0
0.1603 0.8272 0.9819 0.1722 0.8640 0.9865 1
0.0448 0.8890 0.9892 0.1220 0.9071 0.9912 2
0.0201 0.9192 0.9924 0.1171 0.9289 0.9934 3
0.0132 0.9359 0.9942 0.1132 0.9416 0.9948 4
0.0089 0.9466 0.9952 0.1095 0.9506 0.9957 5
0.0078 0.9540 0.9960 0.1065 0.9569 0.9963 6

Framework versions

  • Transformers 4.41.2
  • TensorFlow 2.15.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
10
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mostafasmart/vit-base-patch16-224-7class224

Finetuned
(935)
this model

Evaluation results