Payment Extraction Model (Llama 3.2-1B)
Fine-tuned Llama 3.2-1B-Instruct for extracting payment information from multilingual text (English, Uzbek, Russian).
Model Details
- Base Model:
meta-llama/Llama-3.2-1B-Instruct - Training Data: 4,082 examples
- Training Duration: 5 epochs
- Method: LoRA (Low-Rank Adaptation)
- Best Checkpoint: Step 900 (validation loss: 0.384)
- Trainable Parameters: 0.9% (11.27M / 1.24B)
Capabilities
Extracts structured payment information:
- amount: Payment amount
- receiver_name: Recipient name
- receiver_inn: Tax identification number
- receiver_account: Bank account number
- mfo: Bank code
- payment_purpose: Purpose of payment
- purpose_code: Payment purpose code
- intent: Classification (create_transaction, partial_create_transaction, list_transaction)
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
# Load model
base_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-1B-Instruct",
device_map="auto",
torch_dtype=torch.bfloat16
)
model = PeftModel.from_pretrained(base_model, "primel/aibama")
tokenizer = AutoTokenizer.from_pretrained("primel/aibama")
# Extract payment info
text = "Transfer 500000 to LLC Technopark, INN 123456789"
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a payment extraction assistant. Extract payment information from text and return ONLY valid JSON.<|eot_id|><|start_header_id|>user<|end_header_id|>
{text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
Training Data Distribution
- create_transaction: 36.7% (1,500 examples)
- partial_create_transaction: 52.6% (2,148 examples)
- list_transaction: 10.6% (434 examples)
Performance
| Metric | Value |
|---|---|
| Training Loss | 0.3785 |
| Validation Loss | 0.3844 |
| Mean Token Accuracy | 92.59% |
| Entropy | 0.424 |
Limitations
- Optimized for payment-related text in English, Uzbek, and Russian
- May require base model access (Llama 3.2 license)
- Best performance on structured payment instructions
Citation
@misc{payment-extractor-llama32,
author = {Your Name},
title = {Payment Extraction Model},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/primel/aibama}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for primel/aibama
Base model
meta-llama/Llama-3.2-1B-Instruct