primel commited on
Commit
f9a6c9e
·
verified ·
1 Parent(s): 3f7ba3d

Add model card

Browse files
Files changed (1) hide show
  1. README.md +92 -199
README.md CHANGED
@@ -1,209 +1,102 @@
1
  ---
 
 
 
 
 
2
  base_model: meta-llama/Llama-3.2-1B-Instruct
3
- library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:meta-llama/Llama-3.2-1B-Instruct
 
7
  - lora
8
- - sft
9
- - transformers
10
- - trl
11
  ---
12
 
13
- # Model Card for Model ID
14
-
15
- <!-- Provide a quick summary of what the model is/does. -->
16
-
17
 
 
18
 
19
  ## Model Details
20
 
21
- ### Model Description
22
-
23
- <!-- Provide a longer summary of what this model is. -->
24
-
25
-
26
-
27
- - **Developed by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** [More Information Needed]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
-
35
- ### Model Sources [optional]
36
-
37
- <!-- Provide the basic links for the model. -->
38
-
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
-
43
- ## Uses
44
-
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
-
47
- ### Direct Use
48
-
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
-
51
- [More Information Needed]
52
-
53
- ### Downstream Use [optional]
54
-
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
-
57
- [More Information Needed]
58
-
59
- ### Out-of-Scope Use
60
-
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
-
63
- [More Information Needed]
64
-
65
- ## Bias, Risks, and Limitations
66
-
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
-
69
- [More Information Needed]
70
-
71
- ### Recommendations
72
-
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
-
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
-
77
- ## How to Get Started with the Model
78
-
79
- Use the code below to get started with the model.
80
-
81
- [More Information Needed]
82
-
83
- ## Training Details
84
-
85
- ### Training Data
86
-
87
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
-
89
- [More Information Needed]
90
-
91
- ### Training Procedure
92
-
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
-
95
- #### Preprocessing [optional]
96
-
97
- [More Information Needed]
98
-
99
-
100
- #### Training Hyperparameters
101
-
102
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
-
104
- #### Speeds, Sizes, Times [optional]
105
-
106
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
-
108
- [More Information Needed]
109
-
110
- ## Evaluation
111
-
112
- <!-- This section describes the evaluation protocols and provides the results. -->
113
-
114
- ### Testing Data, Factors & Metrics
115
-
116
- #### Testing Data
117
-
118
- <!-- This should link to a Dataset Card if possible. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Factors
123
-
124
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
-
126
- [More Information Needed]
127
-
128
- #### Metrics
129
-
130
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
-
132
- [More Information Needed]
133
-
134
- ### Results
135
-
136
- [More Information Needed]
137
-
138
- #### Summary
139
-
140
-
141
-
142
- ## Model Examination [optional]
143
-
144
- <!-- Relevant interpretability work for the model goes here -->
145
-
146
- [More Information Needed]
147
-
148
- ## Environmental Impact
149
-
150
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
-
152
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
-
154
- - **Hardware Type:** [More Information Needed]
155
- - **Hours used:** [More Information Needed]
156
- - **Cloud Provider:** [More Information Needed]
157
- - **Compute Region:** [More Information Needed]
158
- - **Carbon Emitted:** [More Information Needed]
159
-
160
- ## Technical Specifications [optional]
161
-
162
- ### Model Architecture and Objective
163
-
164
- [More Information Needed]
165
-
166
- ### Compute Infrastructure
167
-
168
- [More Information Needed]
169
-
170
- #### Hardware
171
-
172
- [More Information Needed]
173
-
174
- #### Software
175
-
176
- [More Information Needed]
177
-
178
- ## Citation [optional]
179
-
180
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
-
182
- **BibTeX:**
183
-
184
- [More Information Needed]
185
-
186
- **APA:**
187
-
188
- [More Information Needed]
189
-
190
- ## Glossary [optional]
191
-
192
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
-
194
- [More Information Needed]
195
-
196
- ## More Information [optional]
197
-
198
- [More Information Needed]
199
-
200
- ## Model Card Authors [optional]
201
-
202
- [More Information Needed]
203
-
204
- ## Model Card Contact
205
-
206
- [More Information Needed]
207
- ### Framework versions
208
-
209
- - PEFT 0.18.0
 
1
  ---
2
+ language:
3
+ - en
4
+ - uz
5
+ - ru
6
+ license: llama3.2
7
  base_model: meta-llama/Llama-3.2-1B-Instruct
 
 
8
  tags:
9
+ - payment-extraction
10
+ - financial-nlp
11
  - lora
12
+ - fine-tuned
13
+ - llama-3.2
14
+ library_name: peft
15
  ---
16
 
17
+ # Payment Extraction Model (Llama 3.2-1B)
 
 
 
18
 
19
+ Fine-tuned Llama 3.2-1B-Instruct for extracting payment information from multilingual text (English, Uzbek, Russian).
20
 
21
  ## Model Details
22
 
23
+ - **Base Model**: `meta-llama/Llama-3.2-1B-Instruct`
24
+ - **Training Data**: 4,082 examples
25
+ - **Training Duration**: 5 epochs
26
+ - **Method**: LoRA (Low-Rank Adaptation)
27
+ - **Best Checkpoint**: Step 900 (validation loss: 0.384)
28
+ - **Trainable Parameters**: 0.9% (11.27M / 1.24B)
29
+
30
+ ## Capabilities
31
+
32
+ Extracts structured payment information:
33
+ - **amount**: Payment amount
34
+ - **receiver_name**: Recipient name
35
+ - **receiver_inn**: Tax identification number
36
+ - **receiver_account**: Bank account number
37
+ - **mfo**: Bank code
38
+ - **payment_purpose**: Purpose of payment
39
+ - **purpose_code**: Payment purpose code
40
+ - **intent**: Classification (create_transaction, partial_create_transaction, list_transaction)
41
+
42
+ ## Usage
43
+ ```python
44
+ from transformers import AutoTokenizer, AutoModelForCausalLM
45
+ from peft import PeftModel
46
+ import torch
47
+
48
+ # Load model
49
+ base_model = AutoModelForCausalLM.from_pretrained(
50
+ "meta-llama/Llama-3.2-1B-Instruct",
51
+ device_map="auto",
52
+ torch_dtype=torch.bfloat16
53
+ )
54
+ model = PeftModel.from_pretrained(base_model, "primel/aibama")
55
+ tokenizer = AutoTokenizer.from_pretrained("primel/aibama")
56
+
57
+ # Extract payment info
58
+ text = "Transfer 500000 to LLC Technopark, INN 123456789"
59
+ prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
60
+
61
+ You are a payment extraction assistant. Extract payment information from text and return ONLY valid JSON.<|eot_id|><|start_header_id|>user<|end_header_id|>
62
+
63
+ {text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
64
+
65
+ """
66
+
67
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
68
+ outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.1)
69
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
70
+ ```
71
+
72
+ ## Training Data Distribution
73
+
74
+ - **create_transaction**: 36.7% (1,500 examples)
75
+ - **partial_create_transaction**: 52.6% (2,148 examples)
76
+ - **list_transaction**: 10.6% (434 examples)
77
+
78
+ ## Performance
79
+
80
+ | Metric | Value |
81
+ |--------|-------|
82
+ | Training Loss | 0.3785 |
83
+ | Validation Loss | 0.3844 |
84
+ | Mean Token Accuracy | 92.59% |
85
+ | Entropy | 0.424 |
86
+
87
+ ## Limitations
88
+
89
+ - Optimized for payment-related text in English, Uzbek, and Russian
90
+ - May require base model access (Llama 3.2 license)
91
+ - Best performance on structured payment instructions
92
+
93
+ ## Citation
94
+ ```bibtex
95
+ @misc{payment-extractor-llama32,
96
+ author = {Your Name},
97
+ title = {Payment Extraction Model},
98
+ year = {2024},
99
+ publisher = {HuggingFace},
100
+ url = {https://huggingface.co/primel/aibama}
101
+ }
102
+ ```