|
|
--- |
|
|
library_name: peft |
|
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
|
tags: |
|
|
- medical |
|
|
- cardiology |
|
|
- embeddings |
|
|
- domain-adaptation |
|
|
- lora |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
language: |
|
|
- en |
|
|
license: apache-2.0 |
|
|
--- |
|
|
|
|
|
# CardioEmbed-MPNet-base |
|
|
|
|
|
**Domain-specialized cardiology text embeddings using LoRA-adapted MPNet-base** |
|
|
|
|
|
Part of a comparative study of 10 embedding architectures for clinical cardiology. |
|
|
|
|
|
## Performance |
|
|
|
|
|
| Metric | Score | |
|
|
|--------|-------| |
|
|
| Separation Score | **0.386** | |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
from peft import PeftModel |
|
|
|
|
|
base_model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2") |
|
|
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2") |
|
|
model = PeftModel.from_pretrained(base_model, "richardyoung/CardioEmbed-MPNet-base") |
|
|
``` |
|
|
|
|
|
## Training |
|
|
|
|
|
- **Training Data**: 106,535 cardiology text pairs from medical textbooks |
|
|
- **Method**: LoRA fine-tuning (r=16, alpha=32) |
|
|
- **Loss**: Multiple Negatives Ranking Loss (InfoNCE) |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@article{young2024comparative, |
|
|
title={Comparative Analysis of LoRA-Adapted Embedding Models for Clinical Cardiology Text Representation}, |
|
|
author={Young, Richard J and Matthews, Alice M}, |
|
|
journal={arXiv preprint}, |
|
|
year={2024} |
|
|
} |
|
|
``` |
|
|
|