SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("seregadgl101/test_bge_2_10ep")
sentences = [
'набор моя первая кухня',
'кухонные наборы',
'ea sports fc 23 ps4',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.9702 |
| spearman_cosine |
0.9169 |
| pearson_manhattan |
0.9696 |
| spearman_manhattan |
0.9166 |
| pearson_euclidean |
0.9696 |
| spearman_euclidean |
0.9166 |
| pearson_dot |
0.9631 |
| spearman_dot |
0.9173 |
| pearson_max |
0.9702 |
| spearman_max |
0.9173 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
learning_rate: 2e-05
num_train_epochs: 10
warmup_ratio: 0.1
save_only_model: True
seed: 33
fp16: True
load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 8
per_device_eval_batch_size: 8
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: True
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 33
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
loss |
sts-dev_spearman_cosine |
| 0.0882 |
50 |
- |
2.7444 |
0.4991 |
| 0.1764 |
100 |
- |
2.5535 |
0.6093 |
| 0.2646 |
150 |
- |
2.3365 |
0.6761 |
| 0.3527 |
200 |
- |
2.1920 |
0.7247 |
| 0.4409 |
250 |
- |
2.2210 |
0.7446 |
| 0.5291 |
300 |
- |
2.1432 |
0.7610 |
| 0.6173 |
350 |
- |
2.2488 |
0.7769 |
| 0.7055 |
400 |
- |
2.3736 |
0.7749 |
| 0.7937 |
450 |
- |
2.0688 |
0.7946 |
| 0.8818 |
500 |
2.3647 |
2.5331 |
0.7879 |
| 0.9700 |
550 |
- |
2.1087 |
0.7742 |
| 1.0582 |
600 |
- |
2.1302 |
0.8068 |
| 1.1464 |
650 |
- |
2.2669 |
0.8114 |
| 1.2346 |
700 |
- |
2.0269 |
0.8039 |
| 1.3228 |
750 |
- |
2.2095 |
0.8138 |
| 1.4109 |
800 |
- |
2.5288 |
0.8190 |
| 1.4991 |
850 |
- |
2.3442 |
0.8222 |
| 1.5873 |
900 |
- |
2.3759 |
0.8289 |
| 1.6755 |
950 |
- |
2.1893 |
0.8280 |
| 1.7637 |
1000 |
2.0682 |
2.0056 |
0.8426 |
| 1.8519 |
1050 |
- |
2.0832 |
0.8527 |
| 1.9400 |
1100 |
- |
2.0336 |
0.8515 |
| 2.0282 |
1150 |
- |
2.0571 |
0.8591 |
| 2.1164 |
1200 |
- |
2.1516 |
0.8565 |
| 2.2046 |
1250 |
- |
2.2035 |
0.8602 |
| 2.2928 |
1300 |
- |
2.5294 |
0.8513 |
| 2.3810 |
1350 |
- |
2.4177 |
0.8647 |
| 2.4691 |
1400 |
- |
2.1630 |
0.8709 |
| 2.5573 |
1450 |
- |
2.1279 |
0.8661 |
| 2.6455 |
1500 |
1.678 |
2.1639 |
0.8744 |
| 2.7337 |
1550 |
- |
2.2592 |
0.8799 |
| 2.8219 |
1600 |
- |
2.2288 |
0.8822 |
| 2.9101 |
1650 |
- |
2.2427 |
0.8831 |
| 2.9982 |
1700 |
- |
2.4380 |
0.8776 |
| 3.0864 |
1750 |
- |
2.1689 |
0.8826 |
| 3.1746 |
1800 |
- |
1.8099 |
0.8868 |
| 3.2628 |
1850 |
- |
2.0881 |
0.8832 |
| 3.3510 |
1900 |
- |
2.0785 |
0.8892 |
| 3.4392 |
1950 |
- |
2.2512 |
0.8865 |
| 3.5273 |
2000 |
1.2168 |
2.1249 |
0.8927 |
| 3.6155 |
2050 |
- |
2.1179 |
0.8950 |
| 3.7037 |
2100 |
- |
2.1932 |
0.8973 |
| 3.7919 |
2150 |
- |
2.2628 |
0.8967 |
| 3.8801 |
2200 |
- |
2.0764 |
0.8972 |
| 3.9683 |
2250 |
- |
1.9575 |
0.9012 |
| 4.0564 |
2300 |
- |
2.3302 |
0.8985 |
| 4.1446 |
2350 |
- |
2.3008 |
0.8980 |
| 4.2328 |
2400 |
- |
2.2886 |
0.8968 |
| 4.3210 |
2450 |
- |
2.1694 |
0.8973 |
| 4.4092 |
2500 |
1.0851 |
2.1102 |
0.9010 |
| 4.4974 |
2550 |
- |
2.2596 |
0.9021 |
| 4.5855 |
2600 |
- |
2.1944 |
0.9019 |
| 4.6737 |
2650 |
- |
2.0728 |
0.9029 |
| 4.7619 |
2700 |
- |
2.4573 |
0.9031 |
| 4.8501 |
2750 |
- |
2.2306 |
0.9057 |
| 4.9383 |
2800 |
- |
2.2637 |
0.9068 |
| 5.0265 |
2850 |
- |
2.5110 |
0.9068 |
| 5.1146 |
2900 |
- |
2.6613 |
0.9042 |
| 5.2028 |
2950 |
- |
2.4713 |
0.9070 |
| 5.2910 |
3000 |
0.8143 |
2.3709 |
0.9082 |
| 5.3792 |
3050 |
- |
2.6083 |
0.9058 |
| 5.4674 |
3100 |
- |
2.5377 |
0.9044 |
| 5.5556 |
3150 |
- |
2.3146 |
0.9071 |
| 5.6437 |
3200 |
- |
2.2603 |
0.9085 |
| 5.7319 |
3250 |
- |
2.5842 |
0.9068 |
| 5.8201 |
3300 |
- |
2.6045 |
0.9093 |
| 5.9083 |
3350 |
- |
2.6207 |
0.9103 |
| 5.9965 |
3400 |
- |
2.5992 |
0.9098 |
| 6.0847 |
3450 |
- |
2.7799 |
0.9090 |
| 6.1728 |
3500 |
0.5704 |
2.7198 |
0.9098 |
| 6.2610 |
3550 |
- |
2.9783 |
0.9089 |
| 6.3492 |
3600 |
- |
2.4165 |
0.9120 |
| 6.4374 |
3650 |
- |
2.4488 |
0.9122 |
| 6.5256 |
3700 |
- |
2.6764 |
0.9113 |
| 6.6138 |
3750 |
- |
2.5327 |
0.9130 |
| 6.7019 |
3800 |
- |
2.5875 |
0.9129 |
| 6.7901 |
3850 |
- |
2.7036 |
0.9130 |
| 6.8783 |
3900 |
- |
2.7566 |
0.9120 |
| 6.9665 |
3950 |
- |
2.5488 |
0.9127 |
| 7.0547 |
4000 |
0.4287 |
2.8512 |
0.9127 |
| 7.1429 |
4050 |
- |
2.7361 |
0.9128 |
| 7.2310 |
4100 |
- |
2.7434 |
0.9135 |
| 7.3192 |
4150 |
- |
2.9410 |
0.9129 |
| 7.4074 |
4200 |
- |
2.9452 |
0.9126 |
| 7.4956 |
4250 |
- |
2.8665 |
0.9140 |
| 7.5838 |
4300 |
- |
2.8215 |
0.9145 |
| 7.6720 |
4350 |
- |
2.6978 |
0.9147 |
| 7.7601 |
4400 |
- |
2.8445 |
0.9143 |
| 7.8483 |
4450 |
- |
2.6041 |
0.9155 |
| 7.9365 |
4500 |
0.3099 |
2.7219 |
0.9155 |
| 8.0247 |
4550 |
- |
2.7180 |
0.9160 |
| 8.1129 |
4600 |
- |
2.6906 |
0.9160 |
| 8.2011 |
4650 |
- |
2.8628 |
0.9156 |
| 8.2892 |
4700 |
- |
2.7820 |
0.9158 |
| 8.3774 |
4750 |
- |
2.8457 |
0.9157 |
| 8.4656 |
4800 |
- |
2.7286 |
0.9160 |
| 8.5538 |
4850 |
- |
2.7131 |
0.9164 |
| 8.6420 |
4900 |
- |
2.8368 |
0.9165 |
| 8.7302 |
4950 |
- |
2.8033 |
0.9167 |
| 8.8183 |
5000 |
0.2342 |
2.7307 |
0.9169 |
| 8.9065 |
5050 |
- |
2.8483 |
0.9167 |
| 8.9947 |
5100 |
- |
2.9736 |
0.9167 |
| 9.0829 |
5150 |
- |
2.9151 |
0.9168 |
| 9.1711 |
5200 |
- |
2.9375 |
0.9167 |
| 9.2593 |
5250 |
- |
2.9968 |
0.9168 |
| 9.3474 |
5300 |
- |
3.0024 |
0.9167 |
| 9.4356 |
5350 |
- |
2.9444 |
0.9167 |
| 9.5238 |
5400 |
- |
2.9477 |
0.9167 |
| 9.6120 |
5450 |
- |
2.9205 |
0.9168 |
| 9.7002 |
5500 |
0.1639 |
2.9286 |
0.9167 |
| 9.7884 |
5550 |
- |
2.9421 |
0.9168 |
| 9.8765 |
5600 |
- |
2.9733 |
0.9168 |
| 9.9647 |
5650 |
- |
2.9777 |
0.9169 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}