DOMMETI's picture
Update Home.py
190accd verified
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from keras.models import load_model
import numpy as np
import cv2
st.set_page_config(page_title="Digit AI", layout="centered")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@500&family=Outfit:wght@300;400;600&display=swap');
html, body, [class*="css"] {
font-family: 'Outfit', sans-serif;
background: linear-gradient(to right, #090909, #1f1c2c);
color: white;
}
h1 {
font-family: 'Orbitron', sans-serif;
color: #00fff7;
font-size: 3em;
text-align: center;
text-shadow: 0 0 10px #00fff7;
margin-bottom: 0;
}
p {
text-align: center;
font-size: 1.1em;
color: #ccc;
margin-top: 0;
margin-bottom: 30px;
}
.canvas-wrapper {
display: flex;
justify-content: center;
background: rgba(255,255,255,0.05);
padding: 25px;
border-radius: 25px;
box-shadow: 0 8px 24px rgba(0,255,255,0.1);
backdrop-filter: blur(10px);
margin-bottom: 30px;
}
.prediction-box {
font-size: 2.2em;
font-weight: 600;
text-align: center;
color: #00fff7;
background: rgba(255, 255, 255, 0.05);
padding: 20px;
border-radius: 15px;
box-shadow: 0 0 15px rgba(0,255,255,0.4);
}
.emoji {
text-align: center;
font-size: 3em;
margin-top: 10px;
}
</style>
""", unsafe_allow_html=True)
st.markdown("<h1>Digit Recognizer</h1>", unsafe_allow_html=True)
st.markdown("<p>Draw a digit (0–9) below and see what the AI thinks it is!</p>", unsafe_allow_html=True)
st.sidebar.markdown("### ✏️ Drawing Settings")
drawing_mode = st.sidebar.selectbox("Tool", ("freedraw", "line", "rect", "circle", "transform"))
stroke_width = st.sidebar.slider("Stroke Width", 1, 25, 10)
stroke_color = st.sidebar.color_picker("Stroke Color", "#FFFFFF")
bg_color = st.sidebar.color_picker("Background Color", "#000000")
realtime_update = st.sidebar.checkbox("Update Realtime", True)
@st.cache_resource
def load_mnist_model():
return load_model("digit_recognization.keras")
model = load_mnist_model()
st.markdown('<div class="canvas-wrapper">', unsafe_allow_html=True)
canvas_result = st_canvas(
fill_color="rgba(255, 255, 255, 0.05)",
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color=bg_color,
update_streamlit=realtime_update,
height=280,
width=280,
drawing_mode=drawing_mode,
key="canvas"
)
st.markdown('</div>', unsafe_allow_html=True)
if canvas_result.image_data is not None:
img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY)
img_resized = cv2.resize(img, (28, 28))
img_normalized = img_resized / 255.0
img_reshaped = img_normalized.reshape((1, 28, 28))
prediction = model.predict(img_reshaped)
predicted_digit = np.argmax(prediction)
st.markdown(f"<div class='prediction-box'>Prediction: {predicted_digit}</div>", unsafe_allow_html=True)
st.markdown(f"<div class='emoji'>{['0️⃣','1️⃣','2️⃣','3️⃣','4️⃣','5️⃣','6️⃣','7️⃣','8️⃣','9️⃣'][predicted_digit]}</div>", unsafe_allow_html=True)