Spaces:
Configuration error
Configuration error
File size: 15,801 Bytes
219c63b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import streamlit as st
import shutil
import importlib
import pandas as pd
# ----------------------------
# Config
# ----------------------------
st.set_page_config(page_title="Mini Process Miner", layout="wide")
DEBUG = True # set to False to hide the env checks from users
# Optional: quick environment/dependency check
if DEBUG:
st.write("Python OK. Checking deps…")
st.write("pm4py import:", bool(importlib.util.find_spec("pm4py")))
st.write("graphviz (pip) import:", bool(importlib.util.find_spec("graphviz")))
st.write("dot in PATH:", shutil.which("dot"))
# ----------------------------
# Page setup
# ----------------------------
st.title("Mini Process Miner (vibe-coded)")
# Uploader with clear instructions
uploaded = st.file_uploader(
"Upload your event log (CSV)",
type=["csv"],
help="Use EXACT headers (lowercase): required → case_id, activity, timestamp; optional → column1, column2, column3."
)
st.caption(
"**Required columns:** case_id, activity, timestamp • "
"**Optional:** column1, column2, column3 (e.g., resource, team, location) • "
"Need a sample dataset? [Download a test CSV here](https://drive.google.com/drive/folders/1q0iqn5_FFz4EttLDl0zR09RQ3z4JsdDR) • "
"**Disclaimer:** This demo tool offers no guarantees regarding data security or accuracy; use at your own risk. • "
"Created by Dennis Arrindell, powered by [PM4Py](https://pm4py.fit.fraunhofer.de/), and 100% vibe-coded with ChatGPT."
)
# ----------------------------
# Helpers
# ----------------------------
def ensure_parsed(df: pd.DataFrame) -> pd.DataFrame:
"""Normalize columns and parse timestamp."""
df = df.copy()
df.columns = [c.strip().lower() for c in df.columns]
df["timestamp"] = pd.to_datetime(df["timestamp"], errors="coerce")
df = df.dropna(subset=["timestamp"])
return df
def compute_ordered(df: pd.DataFrame) -> pd.DataFrame:
return df.sort_values(["case_id", "timestamp"])
def apply_case_level_exclusion(df: pd.DataFrame, activities_to_drop: list) -> pd.DataFrame:
"""Remove entire cases that contain any of the selected activities."""
if not activities_to_drop:
return df
cases_with_forbidden = df.loc[df["activity"].isin(activities_to_drop), "case_id"].unique()
return df.loc[~df["case_id"].isin(cases_with_forbidden)].copy()
def apply_event_level_exclusion(df: pd.DataFrame, activities_to_remove: list) -> pd.DataFrame:
"""Remove only those activity events, keep the rest of the case."""
if not activities_to_remove:
return df
out = df.loc[~df["activity"].isin(activities_to_remove)].copy()
valid_cases = out["case_id"].value_counts()
keep_cases = valid_cases[valid_cases > 0].index
return out.loc[out["case_id"].isin(keep_cases)].copy()
def apply_activity_threshold(df: pd.DataFrame, min_freq: int) -> pd.DataFrame:
"""Drop events whose activity total frequency < min_freq."""
if min_freq <= 1 or df.empty:
return df
counts = df["activity"].value_counts()
keep_acts = counts[counts >= min_freq].index
return df.loc[df["activity"].isin(keep_acts)].copy()
def build_edges(ordered_df: pd.DataFrame) -> pd.DataFrame:
"""Build directly-follows edges with counts."""
if ordered_df.empty:
return pd.DataFrame(columns=["edge", "count"])
tmp = ordered_df.copy()
tmp["next_activity"] = tmp.groupby("case_id")["activity"].shift(-1)
edges = tmp.dropna(subset=["next_activity"])[["activity", "next_activity"]]
if edges.empty:
return pd.DataFrame(columns=["edge", "count"])
edges["edge"] = edges["activity"] + " → " + edges["next_activity"]
edge_counts = edges["edge"].value_counts().rename_axis("edge").reset_index(name="count")
return edge_counts
def apply_optional_column_includes(df: pd.DataFrame, colname: str, selected: list) -> pd.DataFrame:
"""If selections provided for a column, keep only rows where column ∈ selected."""
if colname in df.columns and selected:
return df[df[colname].astype(str).isin([str(x) for x in selected])]
return df
# ----------------------------
# Main
# ----------------------------
if uploaded:
raw_df = pd.read_csv(uploaded)
# Validate columns early (we normalize to lowercase)
required = {"case_id", "activity", "timestamp"}
if not required.issubset(set([c.strip().lower() for c in raw_df.columns])):
st.error("CSV must include required columns: case_id, activity, timestamp. Optional: column1, column2, column3.")
st.stop()
df = ensure_parsed(raw_df)
# ----------------------------
# Sidebar filters (case/event + optional column1/2/3) FIRST
# ----------------------------
st.sidebar.header("Filters")
# Optional extra columns (exact names after normalization): column1, column2, column3
extra_cols_present = [c for c in ["column1", "column2", "column3"] if c in df.columns]
# Case-level exclusion
all_activities = sorted(df["activity"].astype(str).unique().tolist())
case_exclude = st.sidebar.multiselect(
"Remove all CASES containing these activities",
options=all_activities,
help="If a case contains one of these activities, the entire case is removed."
)
# Event-level exclusion
event_exclude = st.sidebar.multiselect(
"Remove only EVENTS with these activities (keep cases)",
options=all_activities,
help="Events with these activities are dropped, but the case remains if other events exist."
)
# Optional include filters for extra columns
if extra_cols_present:
st.sidebar.markdown("---")
st.sidebar.subheader("Optional column filters")
selections = {}
for col in extra_cols_present:
options = sorted(df[col].dropna().astype(str).unique().tolist())
selections[col] = st.sidebar.multiselect(
f"Include only {col} values",
options=options,
help=f"Leave empty to include all {col} values."
)
else:
selections = {}
# Apply case/event filters
df_filt = apply_case_level_exclusion(df, case_exclude)
df_filt = apply_event_level_exclusion(df_filt, event_exclude)
# Apply optional column includes
for col, sel in selections.items():
df_filt = apply_optional_column_includes(df_filt, col, sel)
if df_filt.empty:
st.warning("All data filtered out. Adjust filters to see results.")
st.stop()
ordered = compute_ordered(df_filt)
# ----------------------------
# Sidebar sliders (activity & connection thresholds)
# ----------------------------
act_counts_for_slider = ordered["activity"].value_counts()
max_act_allowed = int(act_counts_for_slider.max()) if not act_counts_for_slider.empty else 1
if max_act_allowed < 1:
max_act_allowed = 1
apply_act_thresh_to_model = st.sidebar.checkbox(
"Apply activity frequency threshold to the model",
value=True,
help="If enabled, activities below the threshold are removed before discovery/visualization."
)
min_act = st.sidebar.slider(
"Min activity frequency to KEEP",
min_value=1, max_value=max_act_allowed, value=1,
help="Drops activities whose total frequency is below this value (if enabled above)."
)
# Create df_model after activity slider decision
if apply_act_thresh_to_model:
df_model = apply_activity_threshold(ordered, min_act)
else:
df_model = ordered
df_model = compute_ordered(df_model)
if df_model.empty:
st.warning("All events dropped by the activity frequency threshold. Lower the threshold.")
st.stop()
# Connection frequency slider (visual-only)
edge_counts_for_slider = build_edges(df_model)
max_edge_allowed = int(edge_counts_for_slider["count"].max()) if not edge_counts_for_slider.empty else 1
if max_edge_allowed < 1:
max_edge_allowed = 1
min_edge = st.sidebar.slider(
"Min connection frequency to SHOW",
min_value=1, max_value=max_edge_allowed, value=1,
help="Hides low-frequency connections in the Connections/DFG views (visual-only)."
)
st.sidebar.markdown("---")
st.sidebar.caption("Activity threshold may modify the model; connection threshold only affects visuals.")
# ----------------------------
# Metrics
# ----------------------------
total_cases = df_model["case_id"].nunique()
total_events = len(df_model)
unique_acts = df_model["activity"].nunique()
c1, c2, c3 = st.columns(3)
c1.metric("Total cases", total_cases)
c2.metric("Total events", total_events)
c3.metric("Unique activities", unique_acts)
# ----------------------------
# Activity frequency (reflects min_act)
# ----------------------------
st.subheader("Activity frequency")
act_counts = df_model["activity"].value_counts().rename_axis("activity").reset_index(name="count")
st.dataframe(act_counts[act_counts["count"] >= min_act], use_container_width=True)
st.bar_chart(act_counts.set_index("activity")["count"])
# ----------------------------
# Variants (quick & dirty)
# ----------------------------
try:
variants = (
df_model.groupby("case_id")["activity"]
.apply(lambda s: " → ".join(s))
.value_counts()
)
st.subheader("Top variants (quick & dirty)")
st.dataframe(
variants.rename("count").reset_index().rename(columns={"index": "variant"}).head(20),
use_container_width=True
)
except Exception:
st.info("Could not compute variants; check your timestamp and activity values.")
# ----------------------------
# Connections (transitions) — respects min_edge (visual-only)
# ----------------------------
st.subheader("Connections (transitions)")
edge_counts = build_edges(df_model)
if edge_counts.empty:
st.info("No transitions found after current filters.")
else:
st.dataframe(edge_counts[edge_counts["count"] >= min_edge], use_container_width=True)
# ----------------------------
# PM4Py visualizations (clean, frequency, performance, DFG)
# ----------------------------
st.subheader("Discovered Process Map")
try:
# Lazy imports so app still loads without pm4py
from pm4py.objects.log.util import dataframe_utils
from pm4py.objects.conversion.log import converter as log_converter
from pm4py.algo.discovery.inductive import algorithm as inductive_miner
from pm4py.visualization.petri_net import visualizer as pn_visualizer
from pm4py.visualization.process_tree import visualizer as pt_visualizer
from pm4py.objects.conversion.process_tree import converter as pt_converter
from pm4py.objects.process_tree import obj as pt_obj
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
from pm4py.visualization.dfg import visualizer as dfg_visualization
# Prepare dataframe for PM4Py
pm_df = df_model.rename(columns={
"case_id": "case:concept:name",
"activity": "concept:name",
"timestamp": "time:timestamp"
}).copy()
pm_df["time:timestamp"] = pd.to_datetime(pm_df["time:timestamp"], errors="coerce")
pm_df = pm_df.dropna(subset=["time:timestamp"])
pm_df = dataframe_utils.convert_timestamp_columns_in_df(pm_df)
# Convert to event log
event_log = log_converter.apply(pm_df)
# Discover model
model = inductive_miner.apply(event_log)
if isinstance(model, pt_obj.ProcessTree):
tree = model
net, im, fm = pt_converter.apply(tree)
tree_gviz = pt_visualizer.apply(tree)
else:
net, im, fm = model
tree_gviz = None
tabs = st.tabs(["Clean Petri Net", "Frequency", "Performance", "DFG (with numbers)"])
# --- Clean Petri net ---
with tabs[0]:
gviz_pn = pn_visualizer.apply(net, im, fm)
st.graphviz_chart(gviz_pn.source, use_container_width=True)
if tree_gviz is not None:
st.caption("Process Tree (discovered)")
st.graphviz_chart(tree_gviz.source, use_container_width=True)
# --- Frequency-decorated Petri net ---
with tabs[1]:
try:
gviz_freq = pn_visualizer.apply(
net, im, fm,
variant=pn_visualizer.Variants.FREQUENCY,
log=event_log
)
st.graphviz_chart(gviz_freq.source, use_container_width=True)
st.caption("Numbers reflect frequencies from the filtered log.")
except Exception as e:
st.info(f"Frequency decoration not available: {e}")
# --- Performance-decorated Petri net ---
with tabs[2]:
try:
gviz_perf = pn_visualizer.apply(
net, im, fm,
variant=pn_visualizer.Variants.PERFORMANCE,
log=event_log
)
st.graphviz_chart(gviz_perf.source, use_container_width=True)
st.caption("Numbers reflect performance (e.g., average durations) computed from timestamps.")
except Exception as e:
st.info(f"Performance decoration not available: {e}")
# --- DFG with numbers (respects min_edge visually) ---
with tabs[3]:
try:
dfg_freq = dfg_discovery.apply(event_log) # {(a,b): count}
dfg_freq_filtered = {k: v for k, v in dfg_freq.items() if v >= min_edge}
dfg_freq_gviz = dfg_visualization.apply(
dfg_freq_filtered if dfg_freq_filtered else dfg_freq,
log=event_log,
variant=dfg_visualization.Variants.FREQUENCY
)
st.graphviz_chart(dfg_freq_gviz.source, use_container_width=True)
st.caption("DFG (Frequency): edge labels show counts. Low-frequency edges hidden per slider.")
dfg_perf_gviz = dfg_visualization.apply(
dfg_freq_filtered if dfg_freq_filtered else dfg_freq,
log=event_log,
variant=dfg_visualization.Variants.PERFORMANCE
)
st.graphviz_chart(dfg_perf_gviz.source, use_container_width=True)
st.caption("DFG (Performance): edge labels show avg durations. Low-frequency edges hidden per slider.")
except Exception as e:
st.info(f"DFG visualization not available: {e}")
except ModuleNotFoundError:
st.error("PM4Py not found. Please ensure pm4py and graphviz are installed.")
except Exception as e:
st.warning(f"Could not render process map: {e}")
# ----------------------------
# Credits
# ----------------------------
st.markdown("---")
with st.expander("Credits", expanded=False):
st.markdown(
"""
**Credits**
Created by **Dennis Arrindell** — creator of the best selling online course about Process Mining on Udemy.
100% Vibe coded using ChatGPT
Inspired by the pioneering work of **Wil van der Aalst**, the “godfather of process mining.”
Powered by the **PM4Py** process mining library, created by **Sebastiaan J. van Zelst** and contributors: https://pm4py.fit.fraunhofer.de/
Built with Python and other open-source libraries (pandas, Streamlit, Graphviz, etc.).
Full technical information, installation steps, and source code available in the **GitHub repository**.
"""
)
|