Update app.py
Browse files
app.py
CHANGED
|
@@ -21,49 +21,30 @@ tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
|
| 21 |
# pulling tokeinzer for text generation model
|
| 22 |
|
| 23 |
dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
|
| 24 |
-
#dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
|
| 25 |
#dataset = load_dataset("epfl-llm/guidelines", split='train')
|
| 26 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
| 27 |
-
#print(dataset[1])
|
| 28 |
length = len(dataset)
|
| 29 |
|
| 30 |
-
#Itemdetails = dataset.items()
|
| 31 |
-
#print(Itemdetails)
|
| 32 |
-
|
| 33 |
embedding_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
| 34 |
-
#embedding_model = HuggingFaceEmbeddings(model_name = "mixedbread-ai/mxbai-embed-large-v1")
|
| 35 |
#all-MiniLM-L6-v2, BAAI/bge-base-en-v1.5,infgrad/stella-base-en-v2, BAAI/bge-large-en-v1.5 working with default dimensions
|
| 36 |
|
| 37 |
df = pd.DataFrame(dataset)
|
| 38 |
-
print(df.iloc[[1]])
|
| 39 |
-
|
| 40 |
df['embeddings'] = df['text'].apply(lambda x: embedding_model.encode(x))
|
|
|
|
|
|
|
|
|
|
| 41 |
print(df.iloc[[1]])
|
| 42 |
dataset = Dataset.from_pandas(df)
|
| 43 |
-
print(
|
| 44 |
-
print(dataset[2])
|
| 45 |
|
| 46 |
-
#doc_func = lambda x: x.text
|
| 47 |
-
#dataset = list(map(doc_func, dataset))
|
| 48 |
-
|
| 49 |
-
#def embedder(dataset):
|
| 50 |
-
# embeddings = embedding_model.encode(dataset["text"])
|
| 51 |
-
# dataset = dataset.add_column('embeddings', embeddings)
|
| 52 |
-
# return dataset
|
| 53 |
-
#updated_dataset = dataset.map(embedder)
|
| 54 |
#dataset['text'][:length]
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
print(dataset[1])
|
| 59 |
|
| 60 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
| 61 |
-
#
|
| 62 |
-
#data = FAISS.from_texts(docs, embedding_model)
|
| 63 |
-
|
| 64 |
-
# Returns a FAISS wrapper vector store. Input is a list of strings. from_documents method used documents to Return VectorStore
|
| 65 |
-
# add_embeddings
|
| 66 |
-
#data = dataset["clean_text"]
|
| 67 |
data = dataset
|
| 68 |
|
| 69 |
#print(data)
|
|
@@ -75,7 +56,7 @@ m = 32 # hnsw parameter. Higher is more accurate but takes more time to index (
|
|
| 75 |
data.add_faiss_index("embeddings")
|
| 76 |
# adds an index column for the embeddings
|
| 77 |
|
| 78 |
-
print("
|
| 79 |
#question = "How can I reverse Diabetes?"
|
| 80 |
|
| 81 |
SYS_PROMPT = """You are an assistant for answering questions.
|
|
|
|
| 21 |
# pulling tokeinzer for text generation model
|
| 22 |
|
| 23 |
dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
|
|
|
|
| 24 |
#dataset = load_dataset("epfl-llm/guidelines", split='train')
|
| 25 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
|
|
|
| 26 |
length = len(dataset)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
embedding_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
|
|
|
| 29 |
#all-MiniLM-L6-v2, BAAI/bge-base-en-v1.5,infgrad/stella-base-en-v2, BAAI/bge-large-en-v1.5 working with default dimensions
|
| 30 |
|
| 31 |
df = pd.DataFrame(dataset)
|
| 32 |
+
#print(df.iloc[[1]])
|
| 33 |
+
print(check1)
|
| 34 |
df['embeddings'] = df['text'].apply(lambda x: embedding_model.encode(x))
|
| 35 |
+
# add_embeddings as a new column
|
| 36 |
+
|
| 37 |
+
print(check1a)
|
| 38 |
print(df.iloc[[1]])
|
| 39 |
dataset = Dataset.from_pandas(df)
|
| 40 |
+
print(check1b)
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
#dataset['text'][:length]
|
| 43 |
|
| 44 |
+
print(dataset[1c])
|
|
|
|
|
|
|
| 45 |
|
| 46 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
| 47 |
+
# Returns dimensions of embedidngs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
data = dataset
|
| 49 |
|
| 50 |
#print(data)
|
|
|
|
| 56 |
data.add_faiss_index("embeddings")
|
| 57 |
# adds an index column for the embeddings
|
| 58 |
|
| 59 |
+
print("check1d")
|
| 60 |
#question = "How can I reverse Diabetes?"
|
| 61 |
|
| 62 |
SYS_PROMPT = """You are an assistant for answering questions.
|