Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -35,7 +35,7 @@ if not os.path.exists(TOKENIZER_PATH):
|
|
| 35 |
MAX_LEN = 128
|
| 36 |
EMBED_DIM = 384
|
| 37 |
LATENT_DIM = 384
|
| 38 |
-
|
| 39 |
|
| 40 |
# ===============================
|
| 41 |
# 1️⃣ 토크나이저 로딩
|
|
@@ -51,12 +51,13 @@ def pad_sentence(tokens):
|
|
| 51 |
return tokens + [pad_id]*(MAX_LEN - len(tokens))
|
| 52 |
|
| 53 |
class EncoderBlock(tf.keras.layers.Layer):
|
| 54 |
-
def __init__(self, embed_dim=EMBED_DIM, ff_dim=1152, seq_len=MAX_LEN):
|
| 55 |
super().__init__()
|
| 56 |
self.embed_dim = embed_dim
|
| 57 |
self.seq_len = seq_len
|
|
|
|
| 58 |
|
| 59 |
-
self.fc1 = layers.Dense(ff_dim)
|
| 60 |
self.fc2 = layers.Dense(embed_dim)
|
| 61 |
self.fc3 = layers.Dense(ff_dim//2)
|
| 62 |
self.fc4 = layers.Dense(embed_dim)
|
|
@@ -71,15 +72,15 @@ class EncoderBlock(tf.keras.layers.Layer):
|
|
| 71 |
self.ln3 = layers.LayerNormalization(epsilon=1e-5)
|
| 72 |
self.ln4 = layers.LayerNormalization(epsilon=1e-5)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
x_norm = self.ln(x)
|
| 78 |
|
| 79 |
h = self.fc1(x_norm)
|
| 80 |
-
g, v = tf.split(h, 2, axis=-1)
|
| 81 |
h = tf.nn.silu(g) * v
|
| 82 |
-
h = self.fc2(h)
|
| 83 |
|
| 84 |
h = x + self.ln1(h)
|
| 85 |
|
|
@@ -92,12 +93,13 @@ class EncoderBlock(tf.keras.layers.Layer):
|
|
| 92 |
v = self.token_mixer(v) * self.token_gate(v)
|
| 93 |
v = tf.transpose(v, [0, 2, 1])
|
| 94 |
|
| 95 |
-
|
| 96 |
-
x = self.fc3(
|
| 97 |
x = tf.nn.silu(x)
|
| 98 |
x = self.fc4(x)
|
| 99 |
|
| 100 |
-
|
|
|
|
| 101 |
|
| 102 |
class L2NormLayer(layers.Layer):
|
| 103 |
def __init__(self, axis=1, epsilon=1e-10, **kwargs):
|
|
@@ -110,34 +112,36 @@ class L2NormLayer(layers.Layer):
|
|
| 110 |
return {"axis": self.axis, "epsilon": self.epsilon, **super().get_config()}
|
| 111 |
|
| 112 |
class SentenceEncoder(tf.keras.Model):
|
| 113 |
-
def __init__(self, vocab_size, embed_dim=
|
| 114 |
super().__init__()
|
| 115 |
self.pad_id = pad_id
|
| 116 |
self.embed = layers.Embedding(vocab_size, embed_dim)
|
| 117 |
self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim)
|
| 118 |
-
self.blocks = [EncoderBlock() for _ in range(2)]
|
| 119 |
self.attn_pool = layers.Dense(1)
|
| 120 |
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
|
| 121 |
-
self.latent = layers.Dense(latent_dim, activation=None)
|
| 122 |
-
self.l2norm = L2NormLayer()
|
|
|
|
| 123 |
|
| 124 |
-
def call(self, x):
|
| 125 |
positions = tf.range(tf.shape(x)[1])[tf.newaxis, :]
|
| 126 |
x_embed = self.embed(x) + self.pos_embed(positions)
|
|
|
|
|
|
|
| 127 |
mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32)
|
| 128 |
-
|
| 129 |
for block in self.blocks:
|
| 130 |
-
|
| 131 |
-
|
| 132 |
|
| 133 |
-
scores = self.attn_pool(
|
| 134 |
scores = tf.where(tf.equal(mask[..., tf.newaxis], 0), -1e9, scores)
|
| 135 |
scores = tf.nn.softmax(scores, axis=1)
|
| 136 |
-
pooled = tf.reduce_sum(
|
| 137 |
|
| 138 |
latent = self.latent(pooled)
|
| 139 |
-
return self.l2norm(latent)
|
| 140 |
-
|
| 141 |
# 3️⃣ 모델 로드
|
| 142 |
# ===============================
|
| 143 |
encoder = SentenceEncoder(vocab_size=vocab_size)
|
|
|
|
| 35 |
MAX_LEN = 128
|
| 36 |
EMBED_DIM = 384
|
| 37 |
LATENT_DIM = 384
|
| 38 |
+
DROP_RATE = 0.1
|
| 39 |
|
| 40 |
# ===============================
|
| 41 |
# 1️⃣ 토크나이저 로딩
|
|
|
|
| 51 |
return tokens + [pad_id]*(MAX_LEN - len(tokens))
|
| 52 |
|
| 53 |
class EncoderBlock(tf.keras.layers.Layer):
|
| 54 |
+
def __init__(self, embed_dim=EMBED_DIM, ff_dim=1152, seq_len=MAX_LEN, drop_rate=DROP_RATE):
|
| 55 |
super().__init__()
|
| 56 |
self.embed_dim = embed_dim
|
| 57 |
self.seq_len = seq_len
|
| 58 |
+
self.drop_rate = drop_rate
|
| 59 |
|
| 60 |
+
self.fc1 = layers.Dense(ff_dim*2)
|
| 61 |
self.fc2 = layers.Dense(embed_dim)
|
| 62 |
self.fc3 = layers.Dense(ff_dim//2)
|
| 63 |
self.fc4 = layers.Dense(embed_dim)
|
|
|
|
| 72 |
self.ln3 = layers.LayerNormalization(epsilon=1e-5)
|
| 73 |
self.ln4 = layers.LayerNormalization(epsilon=1e-5)
|
| 74 |
|
| 75 |
+
self.dropout = layers.Dropout(drop_rate)
|
| 76 |
+
|
| 77 |
+
def call(self, x, mask, training=False):
|
| 78 |
x_norm = self.ln(x)
|
| 79 |
|
| 80 |
h = self.fc1(x_norm)
|
| 81 |
+
g, v = tf.split(h, 2, axis=-1)
|
| 82 |
h = tf.nn.silu(g) * v
|
| 83 |
+
h = self.fc2(h)
|
| 84 |
|
| 85 |
h = x + self.ln1(h)
|
| 86 |
|
|
|
|
| 93 |
v = self.token_mixer(v) * self.token_gate(v)
|
| 94 |
v = tf.transpose(v, [0, 2, 1])
|
| 95 |
|
| 96 |
+
x_norm2 = attn + self.ln3(v)
|
| 97 |
+
x = self.fc3(x_norm2)
|
| 98 |
x = tf.nn.silu(x)
|
| 99 |
x = self.fc4(x)
|
| 100 |
|
| 101 |
+
x = self.dropout(x, training=training)
|
| 102 |
+
return x_norm2 + self.ln4(x)
|
| 103 |
|
| 104 |
class L2NormLayer(layers.Layer):
|
| 105 |
def __init__(self, axis=1, epsilon=1e-10, **kwargs):
|
|
|
|
| 112 |
return {"axis": self.axis, "epsilon": self.epsilon, **super().get_config()}
|
| 113 |
|
| 114 |
class SentenceEncoder(tf.keras.Model):
|
| 115 |
+
def __init__(self, vocab_size, embed_dim=EMBED_DIM, latent_dim=LATENT_DIM, max_len=MAX_LEN, pad_id=pad_id, drop_rate=DROP_RATE):
|
| 116 |
super().__init__()
|
| 117 |
self.pad_id = pad_id
|
| 118 |
self.embed = layers.Embedding(vocab_size, embed_dim)
|
| 119 |
self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim)
|
| 120 |
+
self.blocks = [EncoderBlock(embed_dim=embed_dim, drop_rate=drop_rate) for _ in range(2)]
|
| 121 |
self.attn_pool = layers.Dense(1)
|
| 122 |
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
|
| 123 |
+
self.latent = layers.Dense(latent_dim, activation=None)
|
| 124 |
+
self.l2norm = L2NormLayer()
|
| 125 |
+
self.drop_embed = layers.Dropout(drop_rate)
|
| 126 |
|
| 127 |
+
def call(self, x, training=False):
|
| 128 |
positions = tf.range(tf.shape(x)[1])[tf.newaxis, :]
|
| 129 |
x_embed = self.embed(x) + self.pos_embed(positions)
|
| 130 |
+
x_embed = self.drop_embed(x_embed, training=training)
|
| 131 |
+
|
| 132 |
mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32)
|
| 133 |
+
h = x_embed
|
| 134 |
for block in self.blocks:
|
| 135 |
+
h = block(h, mask, training=training)
|
| 136 |
+
h = self.ln_f(h)
|
| 137 |
|
| 138 |
+
scores = self.attn_pool(h)
|
| 139 |
scores = tf.where(tf.equal(mask[..., tf.newaxis], 0), -1e9, scores)
|
| 140 |
scores = tf.nn.softmax(scores, axis=1)
|
| 141 |
+
pooled = tf.reduce_sum(h * scores, axis=1)
|
| 142 |
|
| 143 |
latent = self.latent(pooled)
|
| 144 |
+
return self.l2norm(latent)
|
|
|
|
| 145 |
# 3️⃣ 모델 로드
|
| 146 |
# ===============================
|
| 147 |
encoder = SentenceEncoder(vocab_size=vocab_size)
|