Kokoro-TTS / app.py
Pendrokar's picture
Update app.py
412be8a verified
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import random
import torch
import re
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
CUDA_AVAILABLE = torch.cuda.is_available()
if not IS_DUPLICATE:
import kokoro
import misaki
print('DEBUG', kokoro.__version__, CUDA_AVAILABLE, misaki.__version__)
try:
import phonemizer
global_phonemizer_en = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
PHONEMIZER_AVAILABLE = True
global_phonemizer_en = None
except ImportError:
PHONEMIZER_AVAILABLE = False
try:
from pygoruut.pygoruut import Pygoruut, PygoruutLanguages
pygoruut = Pygoruut()
goruut_langs = PygoruutLanguages()
# global_phonemizer_en = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
PYGORUUT_AVAILABLE = True
except ImportError:
PYGORUUT_AVAILABLE = False
#todo
PYGORUUT_AVAILABLE = False
CHAR_LIMIT = None if IS_DUPLICATE else 5000
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
def text_to_ipa(text, lang='en-us'):
"""Convert text to IPA using phonemizer or return original text"""
if not PHONEMIZER_AVAILABLE:
return text
try:
# Handle IPA sections within brackets
regex = r"\([^\]]*\)[[^\]]*\]"
ipa_sections = re.findall(regex, text)
print(text)
text = re.sub(regex, '()[]', text)
print(text)
if lang == 'jb':
# Lojban language
import lojban
ps = f'[{text}](/'+ lojban.lojban2ipa(text, 'vits') +'/)'
elif lang in LANG_NAMES:
local_phonemizer = phonemizer.backend.EspeakBackend(language=lang, preserve_punctuation=True, with_stress=True)
ps = local_phonemizer.phonemize([text])
ps = f'[{text}](/'+ ps[0] +'/)'
else:
ps = text
print(ps)
# Add back IPA sections
for ipa in ipa_sections:
ps = ps.replace('( )[ ]', ipa, 1)
print(ps)
return ps
except Exception as e:
print(f"Phonemizer error: {e}")
return text
@spaces.GPU(duration=30)
def forward_gpu(ps, ref_s, speed):
return models[True](ps, ref_s, speed)
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE, lang='en-us'):
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
# Convert text to IPA if not English
if lang != 'en-us':
if (PYGORUUT_AVAILABLE):
text = goruut_phonemize(text, lang, False, False)
else:
text = text_to_ipa(text, lang)
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy()), ps
return None, ''
# Arena API
def predict(text, voice='af_heart', speed=1):
""" Convert the text into speech using Kokoro American English and British English voice models.
Args:
text: string; accepts IPA within ()[] brackets
voice: Literal['af_heart', 'af_bella', 'af_nicole', 'af_aoede', 'af_kore', 'af_sarah', 'af_nova', 'af_sky', 'af_alloy', 'af_jessica', 'af_river', 'am_michael', 'am_fenrir', 'am_puck', 'am_echo', 'am_eric', 'am_liam', 'am_onyx', 'am_santa', 'am_adam', 'bf_emma', 'bf_isabella', 'bf_alice', 'bf_lily', 'bm_george', 'bm_fable', 'bm_lewis', 'bm_daniel']; voice model
lang: Literal['en-us', 'cs', 'da', 'nl', 'et', 'fi', 'fr', 'de', 'el', 'it', 'no', 'pl', 'pt', 'ru', 'sl', 'es', 'sv', 'tr', 'jb']; ISO 639-1 code for the text language; 'jb' is a valid code for Lojban
speed: talkback speed; 0.5-2
Returns: Tuple of (output_audio_path, ipa_results) where output_audio_path is the filepath of output audio
"""
return generate_first(text, voice, speed, use_gpu=False)[0]
def tokenize_first(text, voice='af_heart', lang='en-us'):
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
# Convert text to IPA if not English or if language is specified
if lang != 'en-us':
text = text_to_ipa(text, lang)
pipeline = pipelines[voice[0]]
for _, ps, _ in pipeline(text, voice):
return ps
return ''
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE, lang='en-us'):
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
# Convert text to IPA if not English or if language is specified
if lang != 'en-us':
text = text_to_ipa(text, lang)
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
first = True
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Switching to CPU')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
yield 24000, audio.numpy()
if first:
first = False
yield 24000, torch.zeros(1).numpy()
with open('en.txt', 'r') as r:
random_quotes = [line.strip() for line in r]
def get_random_quote():
return random.choice(random_quotes)
def get_gatsby():
with open('gatsby5k.md', 'r') as r:
return r.read().strip()
def get_frankenstein():
with open('frankenstein5k.md', 'r') as r:
return r.read().strip()
def filter_languages(search_text, selected_languages):
all_languages = languages.get_all_supported_languages()
# Extract last entry from search input
search_terms = search_text.replace(",,", ",").split(",") if search_text else []
last_term = search_terms[-1] if search_terms else ""
# Filter available languages
filtered = [lang for lang in all_languages if last_term == "" or (last_term.lower() in lang.lower())]
# If no results, show a message instead
if not filtered:
filtered = ["No match found..."]
else:
filtered = [filtered[0] + "..."] + filtered
return gr.update(choices=filtered), filtered[0] # Keep dropdown open and selectable
def dephon_offline(txt, language_tag, is_reverse, is_punct):
try:
response = pygoruut.phonemize(language=language_tag, sentence=txt, is_reverse=is_reverse)
except TypeError:
return ''
if not response or not response.Words:
return ''
if is_punct:
phonetic_line = str(response)
else:
phonetic_line = " ".join(word.Phonetic for word in response.Words)
return phonetic_line
def goruut_phonemize(sentence, language, is_reverse, is_punct):
return dephon_offline(sentence, language.strip(","), is_reverse, is_punct)
CHOICES = {
'🇺🇸 🚺 Heart ❤️': 'af_heart',
'🇺🇸 🚺 Bella 🔥': 'af_bella',
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
'🇺🇸 🚺 Aoede': 'af_aoede',
'🇺🇸 🚺 Kore': 'af_kore',
'🇺🇸 🚺 Sarah': 'af_sarah',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 Sky': 'af_sky',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 River': 'af_river',
'🇺🇸 🚹 Michael': 'am_michael',
'🇺🇸 🚹 Fenrir': 'am_fenrir',
'🇺🇸 🚹 Puck': 'am_puck',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇺🇸 🚹 Santa': 'am_santa',
'🇺🇸 🚹 Adam': 'am_adam',
'🇬🇧 🚺 Emma': 'bf_emma',
'🇬🇧 🚺 Isabella': 'bf_isabella',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',
'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇬🇧 🚹 Daniel': 'bm_daniel',
}
for v in CHOICES.values():
pipelines[v[0]].load_voice(v)
TOKEN_NOTE = '''
💡 Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kˈOkəɹO/)`
💬 To adjust intonation, try punctuation `;:,.!?—…"()“”` or stress `ˈ` and `ˌ`
⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)`
⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words)
'''
with gr.Blocks() as generate_tab:
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
generate_btn = gr.Button('Generate', variant='primary')
with gr.Accordion('Output Tokens', open=True):
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
tokenize_btn = gr.Button('Tokenize', variant='secondary')
gr.Markdown(TOKEN_NOTE)
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
if CHAR_LIMIT is not None:
STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.')
STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
with gr.Blocks() as stream_tab:
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
with gr.Row():
stream_btn = gr.Button('Stream', variant='primary')
stop_btn = gr.Button('Stop', variant='stop')
with gr.Accordion('Note', open=True):
gr.Markdown(STREAM_NOTE)
gr.DuplicateButton()
BANNER_TEXT = '''
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
This demo uses native US English and British English speakers. But also supports multiple languages using G2P and phonemizer. Select your language below!
'''
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
API_NAME = None if API_OPEN else False
# Language choices for the dropdown
LANGUAGE_CHOICES = [
['English (US)', 'en-us'],
['Lojban', 'jb'],
['Czech (Non-native)', 'cs'],
['Danish (Non-native)', 'da'],
['Dutch (Non-native)', 'nl'],
['Estonian (Non-native)', 'et'],
['Finnish (Non-native)', 'fi'],
['French (Non-native)', 'fr'],
['German (Non-native)', 'de'],
['Greek (Non-native)', 'el'],
['Italian (Non-native)', 'it'],
['Norwegian (Non-native)', 'no'],
['Polish (Non-native)', 'pl'],
['Portuguese (Non-native)', 'pt'],
['Russian (Non-native)', 'ru'],
['Slovene (Non-native)', 'sl'],
['Spanish (Non-native)', 'es'],
['Swedish (Non-native)', 'sv'],
['Turkish (Non-native)', 'tr'],
]
with gr.Blocks() as app:
with gr.Row():
gr.Markdown(BANNER_TEXT, container=True)
with gr.Row():
with gr.Column():
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream. Supports IPA within (<text>)[<IPA>] parethesis and brackets.")
with gr.Row():
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
use_gpu = gr.Dropdown(
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
value=CUDA_AVAILABLE,
label='Hardware',
info='GPU is usually faster, but has a usage quota',
interactive=CUDA_AVAILABLE
)
with gr.Row():
if (PYGORUUT_AVAILABLE):
# Goruut
lang = gr.Dropdown(
label="Available Languages",
choices=goruut_langs.get_all_supported_languages(),
interactive=True,
allow_custom_value=False
)
else:
# G2P
lang = gr.Dropdown(
LANGUAGE_CHOICES,
value='en-us',
label="Language",
info="Select language for G2P processing"
)
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
random_btn = gr.Button('🎲 Random Quote 💬', variant='secondary')
with gr.Row():
gatsby_btn = gr.Button('🥂 Gatsby 📕', variant='secondary')
frankenstein_btn = gr.Button('💀 Frankenstein 📗', variant='secondary')
with gr.Column():
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
random_btn.click(fn=get_random_quote, inputs=[], outputs=[text], api_name=API_NAME)
gatsby_btn.click(fn=get_gatsby, inputs=[], outputs=[text], api_name=API_NAME)
frankenstein_btn.click(fn=get_frankenstein, inputs=[], outputs=[text], api_name=API_NAME)
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu, lang], outputs=[out_audio, out_ps], api_name=API_NAME)
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice, lang], outputs=[out_ps], api_name=API_NAME)
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu, lang], outputs=[out_stream], api_name=API_NAME)
stop_btn.click(fn=None, cancels=stream_event)
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
if __name__ == '__main__':
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True, mcp_server=API_OPEN)