Spaces:
Build error
Build error
| import pandas as pd | |
| import gradio as gr | |
| from sklearn.ensemble import RandomForestClassifier | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.preprocessing import LabelEncoder | |
| # Load and preprocess the dataset | |
| data = pd.read_csv('data.csv') | |
| # Preprocessing | |
| data['Age'] = data['Age'].fillna(data['Age'].median()) | |
| data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0]) | |
| data['Fare'] = pd.to_numeric(data['Fare'], errors='coerce') | |
| data['Fare'] = data['Fare'].fillna(data['Fare'].median()) | |
| label_encoder = LabelEncoder() | |
| data['Gender'] = label_encoder.fit_transform(data['Gender']) | |
| data['Embarked'] = label_encoder.fit_transform(data['Embarked']) | |
| data.drop(['Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) | |
| # Feature selection | |
| features = ['Pclass', 'Gender', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] | |
| X = data[features] | |
| y = data['Survived'] | |
| # Train the model | |
| X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
| model = RandomForestClassifier(random_state=42) | |
| model.fit(X_train, y_train) | |
| # Gradio interface function | |
| def predict_survival(Pclass, Gender, Age, SibSp, Parch, Fare, Embarked): | |
| # Encode Gender and Embarked | |
| Gender_encoded = 1 if Gender.lower() == 'female' else 0 | |
| Embarked_encoded = {'s': 0, 'c': 1, 'q': 2}.get(Embarked.lower(), 0) | |
| # Create input DataFrame | |
| input_data = pd.DataFrame([[Pclass, Gender_encoded, Age, SibSp, Parch, Fare, Embarked_encoded]], | |
| columns=features) | |
| # Predict | |
| prediction = model.predict(input_data) | |
| return "Survived" if prediction[0] == 1 else "Did Not Survive" | |
| # Gradio inputs and outputs | |
| inputs = [ | |
| gr.Slider(1, 3, step=1, label="Passenger Class (Pclass)"), | |
| gr.Radio(["Male", "Female"], label="Gender"), | |
| gr.Slider(0, 80, step=1, label="Age (in years)"), | |
| gr.Slider(0, 10, step=1, label="Siblings/Spouses (SibSp)"), | |
| gr.Slider(0, 10, step=1, label="Parents/Children (Parch)"), | |
| gr.Slider(0, 500, step=1, label="Ticket Fare (in $)"), | |
| gr.Radio(["S (Southampton)", "C (Cherbourg)", "Q (Queenstown)"], label="Port of Embarkation (Embarked)") | |
| ] | |
| outputs = gr.Textbox(label="Prediction") | |
| # Launch Gradio interface | |
| gr.Interface(fn=predict_survival, inputs=inputs, outputs=outputs, title="Titanic Survival Predictor").launch() | |