Spaces:
Running
Running
File size: 9,301 Bytes
e337fdb b6a884b 623fea8 b6a884b 623fea8 b6a884b 623fea8 b6a884b 623fea8 e337fdb 623fea8 e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b 4652775 b6a884b 4652775 b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b e337fdb b6a884b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
import torch
from PIL import Image
import torchvision.transforms as transforms
import torch.nn as nn
from torchvision import models
from typing import Dict, Tuple
import os
class MultiOutputModel(nn.Module):
"""Multi-output model for artifact classification (matches UI)"""
def __init__(self, num_object_classes, num_material_classes, hidden_size=512):
super(MultiOutputModel, self).__init__()
# Use a pre-trained ResNet as backbone
self.backbone = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)
# Remove the final classification layer
self.backbone = nn.Sequential(*list(self.backbone.children())[:-1])
# Freeze early layers for transfer learning
for param in list(self.backbone.parameters())[:-4]: # Unfreeze more layers for better fine-tuning
param.requires_grad = False
# Classification heads for each attribute
self.object_classifier = nn.Linear(2048, num_object_classes)
self.material_classifier = nn.Linear(2048, num_material_classes)
def forward(self, x):
# Extract features using backbone
features = self.backbone(x)
features = features.view(features.size(0), -1)
# Get predictions for each attribute
object_pred = self.object_classifier(features)
material_pred = self.material_classifier(features)
return {
'object_name': object_pred,
'material': material_pred,
}
def load_model(model_path: str) -> Tuple[torch.nn.Module, Dict[str, Dict[int, str]]]:
"""Load the model from checkpoint and return model and label mappings."""
print(f"Loading model from {model_path}...")
checkpoint = torch.load(model_path, map_location="cpu")
# Get label mappings to determine number of classes
label_mappings = checkpoint.get('label_mappings', {})
num_object_classes = len(label_mappings.get('object_name', {}))
num_material_classes = len(label_mappings.get('material', {}))
if num_object_classes == 0:
print("Warning: No label mappings found, using fallback class counts")
num_object_classes, num_material_classes = 1018, 192
# Check model type based on state_dict keys to determine which architecture to use
model_state_dict = checkpoint.get('model_state_dict', {})
state_dict_keys = set(model_state_dict.keys())
# Only support v1 model (MultiOutputModel) with ResNet backbone
print(f"Loading v1 model (MultiOutputModel) with ResNet backbone")
model = MultiOutputModel(num_object_classes, num_material_classes)
# Load state dict
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
print("Warning: No model_state_dict found in checkpoint")
# Create reverse mappings (id2label)
reverse_mappings = {}
for attr, mapping in label_mappings.items():
reverse_mappings[attr] = {int(v): str(k) for k, v in mapping.items()}
print(f"Loaded {attr} mappings: {len(reverse_mappings[attr])} classes")
return model, reverse_mappings
def run_inference(model: torch.nn.Module, pixel_values: torch.Tensor, device: str) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Run inference on pixel_values and return predictions and confidences for both object_name and material."""
model.eval()
model.to(device)
pixel_values = pixel_values.to(device)
with torch.no_grad():
outputs = model(pixel_values)
# Handle different output formats
if isinstance(outputs, dict):
# Multi-output model format
if 'object_name' in outputs and 'material' in outputs:
logits_obj = outputs['object_name']
logits_mat = outputs['material']
else:
raise ValueError("Expected 'object_name' and 'material' in model outputs")
else:
raise ValueError("Expected dict output with 'object_name' and 'material' keys")
preds_obj = torch.argmax(logits_obj, dim=-1)
probs_obj = torch.softmax(logits_obj, dim=-1)
max_probs_obj = torch.max(probs_obj, dim=-1)[0]
preds_mat = torch.argmax(logits_mat, dim=-1)
probs_mat = torch.softmax(logits_mat, dim=-1)
max_probs_mat = torch.max(probs_mat, dim=-1)[0]
return preds_obj.cpu(), max_probs_obj.cpu(), preds_mat.cpu(), max_probs_mat.cpu()
# Global variables for model and label mappings
model = None
label_mappings = None
device = None
def preprocess_image(image: Image.Image) -> torch.Tensor:
"""Preprocess image for model inference."""
# Define transforms
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Apply transforms
image = image.convert('RGB')
tensor = transform(image).unsqueeze(0) # Add batch dimension
return tensor
def predict_artifact(image: Image.Image) -> tuple[str, float, str, float]:
"""Predict object and material from image."""
global model, label_mappings, device
if model is None:
raise ValueError("Model not loaded. Please restart the application.")
# Preprocess image
pixel_values = preprocess_image(image)
# Run inference
preds_obj, confs_obj, preds_mat, confs_mat = run_inference(model, pixel_values, device)
# Get predictions
object_pred_id = preds_obj[0].item()
material_pred_id = preds_mat[0].item()
object_conf = confs_obj[0].item()
material_conf = confs_mat[0].item()
# Convert IDs to labels
object_name = label_mappings['object_name'].get(object_pred_id, f"class_{object_pred_id}")
material_name = label_mappings['material'].get(material_pred_id, f"class_{material_pred_id}")
return object_name, object_conf, material_name, material_conf
def gradio_predict(image):
"""Gradio interface function."""
if image is None:
return "Please upload an image", "", "", ""
try:
object_name, object_conf, material_name, material_conf = predict_artifact(image)
# Format results
object_result = f"**{object_name}** ({object_conf:.1%} confidence)"
material_result = f"**{material_name}** ({material_conf:.1%} confidence)"
return object_result, material_result, f"{object_conf:.3f}", f"{material_conf:.3f}"
except Exception as e:
return f"Error: {str(e)}", "", "", ""
def load_model_on_startup():
"""Load model when the application starts."""
global model, label_mappings, device
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model from model.pth
model_path = "model.pth"
if not os.path.exists(model_path):
print(f"Warning: Model file not found at {model_path}")
print("Please ensure the model.pth file exists in the current directory before running the application.")
return
try:
model, label_mappings = load_model(model_path)
print("Model loaded successfully!")
print(f"Object classes: {len(label_mappings.get('object_name', {}))}")
print(f"Material classes: {len(label_mappings.get('material', {}))}")
except Exception as e:
print(f"Error loading model: {e}")
# Load model on startup
load_model_on_startup()
# Create Gradio interface
with gr.Blocks(title="Artifact Classification v1", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πΊ Artifact Classification Model v1")
gr.Markdown("Upload an image of an artifact to classify its **object type** and **material composition**.")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Artifact Image", type="pil")
submit_btn = gr.Button("π Classify Artifact", variant="primary")
with gr.Column():
gr.Markdown("### π Classification Results")
object_output = gr.Markdown(label="**Object Type**")
material_output = gr.Markdown(label="**Material**")
with gr.Accordion("π Confidence Scores", open=False):
object_conf = gr.Textbox(label="Object Confidence", interactive=False)
material_conf = gr.Textbox(label="Material Confidence", interactive=False)
# Connect the interface
submit_btn.click(
fn=gradio_predict,
inputs=image_input,
outputs=[object_output, material_output, object_conf, material_conf]
)
# Example images
gr.Examples(
examples=[
# You can add example image paths here if available
],
inputs=image_input,
outputs=[object_output, material_output, object_conf, material_conf],
fn=gradio_predict,
cache_examples=False
)
gr.Markdown("""
### βΉοΈ About
This model uses a ResNet-50 backbone to classify museum artifacts into object types (vase, statue, pottery, etc.)
and material compositions (ceramic, bronze, stone, etc.).
**Model**: MultiOutputModel with ResNet-50 backbone
**Training Data**: Oriental Museum artifacts dataset
""")
if __name__ == "__main__":
demo.launch()
|