SpyC0der77's picture
Update app.py
4652775 verified
raw
history blame
9.3 kB
import gradio as gr
import torch
from PIL import Image
import torchvision.transforms as transforms
import torch.nn as nn
from torchvision import models
from typing import Dict, Tuple
import os
class MultiOutputModel(nn.Module):
"""Multi-output model for artifact classification (matches UI)"""
def __init__(self, num_object_classes, num_material_classes, hidden_size=512):
super(MultiOutputModel, self).__init__()
# Use a pre-trained ResNet as backbone
self.backbone = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)
# Remove the final classification layer
self.backbone = nn.Sequential(*list(self.backbone.children())[:-1])
# Freeze early layers for transfer learning
for param in list(self.backbone.parameters())[:-4]: # Unfreeze more layers for better fine-tuning
param.requires_grad = False
# Classification heads for each attribute
self.object_classifier = nn.Linear(2048, num_object_classes)
self.material_classifier = nn.Linear(2048, num_material_classes)
def forward(self, x):
# Extract features using backbone
features = self.backbone(x)
features = features.view(features.size(0), -1)
# Get predictions for each attribute
object_pred = self.object_classifier(features)
material_pred = self.material_classifier(features)
return {
'object_name': object_pred,
'material': material_pred,
}
def load_model(model_path: str) -> Tuple[torch.nn.Module, Dict[str, Dict[int, str]]]:
"""Load the model from checkpoint and return model and label mappings."""
print(f"Loading model from {model_path}...")
checkpoint = torch.load(model_path, map_location="cpu")
# Get label mappings to determine number of classes
label_mappings = checkpoint.get('label_mappings', {})
num_object_classes = len(label_mappings.get('object_name', {}))
num_material_classes = len(label_mappings.get('material', {}))
if num_object_classes == 0:
print("Warning: No label mappings found, using fallback class counts")
num_object_classes, num_material_classes = 1018, 192
# Check model type based on state_dict keys to determine which architecture to use
model_state_dict = checkpoint.get('model_state_dict', {})
state_dict_keys = set(model_state_dict.keys())
# Only support v1 model (MultiOutputModel) with ResNet backbone
print(f"Loading v1 model (MultiOutputModel) with ResNet backbone")
model = MultiOutputModel(num_object_classes, num_material_classes)
# Load state dict
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
print("Warning: No model_state_dict found in checkpoint")
# Create reverse mappings (id2label)
reverse_mappings = {}
for attr, mapping in label_mappings.items():
reverse_mappings[attr] = {int(v): str(k) for k, v in mapping.items()}
print(f"Loaded {attr} mappings: {len(reverse_mappings[attr])} classes")
return model, reverse_mappings
def run_inference(model: torch.nn.Module, pixel_values: torch.Tensor, device: str) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Run inference on pixel_values and return predictions and confidences for both object_name and material."""
model.eval()
model.to(device)
pixel_values = pixel_values.to(device)
with torch.no_grad():
outputs = model(pixel_values)
# Handle different output formats
if isinstance(outputs, dict):
# Multi-output model format
if 'object_name' in outputs and 'material' in outputs:
logits_obj = outputs['object_name']
logits_mat = outputs['material']
else:
raise ValueError("Expected 'object_name' and 'material' in model outputs")
else:
raise ValueError("Expected dict output with 'object_name' and 'material' keys")
preds_obj = torch.argmax(logits_obj, dim=-1)
probs_obj = torch.softmax(logits_obj, dim=-1)
max_probs_obj = torch.max(probs_obj, dim=-1)[0]
preds_mat = torch.argmax(logits_mat, dim=-1)
probs_mat = torch.softmax(logits_mat, dim=-1)
max_probs_mat = torch.max(probs_mat, dim=-1)[0]
return preds_obj.cpu(), max_probs_obj.cpu(), preds_mat.cpu(), max_probs_mat.cpu()
# Global variables for model and label mappings
model = None
label_mappings = None
device = None
def preprocess_image(image: Image.Image) -> torch.Tensor:
"""Preprocess image for model inference."""
# Define transforms
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Apply transforms
image = image.convert('RGB')
tensor = transform(image).unsqueeze(0) # Add batch dimension
return tensor
def predict_artifact(image: Image.Image) -> tuple[str, float, str, float]:
"""Predict object and material from image."""
global model, label_mappings, device
if model is None:
raise ValueError("Model not loaded. Please restart the application.")
# Preprocess image
pixel_values = preprocess_image(image)
# Run inference
preds_obj, confs_obj, preds_mat, confs_mat = run_inference(model, pixel_values, device)
# Get predictions
object_pred_id = preds_obj[0].item()
material_pred_id = preds_mat[0].item()
object_conf = confs_obj[0].item()
material_conf = confs_mat[0].item()
# Convert IDs to labels
object_name = label_mappings['object_name'].get(object_pred_id, f"class_{object_pred_id}")
material_name = label_mappings['material'].get(material_pred_id, f"class_{material_pred_id}")
return object_name, object_conf, material_name, material_conf
def gradio_predict(image):
"""Gradio interface function."""
if image is None:
return "Please upload an image", "", "", ""
try:
object_name, object_conf, material_name, material_conf = predict_artifact(image)
# Format results
object_result = f"**{object_name}** ({object_conf:.1%} confidence)"
material_result = f"**{material_name}** ({material_conf:.1%} confidence)"
return object_result, material_result, f"{object_conf:.3f}", f"{material_conf:.3f}"
except Exception as e:
return f"Error: {str(e)}", "", "", ""
def load_model_on_startup():
"""Load model when the application starts."""
global model, label_mappings, device
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model from model.pth
model_path = "model.pth"
if not os.path.exists(model_path):
print(f"Warning: Model file not found at {model_path}")
print("Please ensure the model.pth file exists in the current directory before running the application.")
return
try:
model, label_mappings = load_model(model_path)
print("Model loaded successfully!")
print(f"Object classes: {len(label_mappings.get('object_name', {}))}")
print(f"Material classes: {len(label_mappings.get('material', {}))}")
except Exception as e:
print(f"Error loading model: {e}")
# Load model on startup
load_model_on_startup()
# Create Gradio interface
with gr.Blocks(title="Artifact Classification v1", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🏺 Artifact Classification Model v1")
gr.Markdown("Upload an image of an artifact to classify its **object type** and **material composition**.")
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload Artifact Image", type="pil")
submit_btn = gr.Button("πŸ” Classify Artifact", variant="primary")
with gr.Column():
gr.Markdown("### πŸ“Š Classification Results")
object_output = gr.Markdown(label="**Object Type**")
material_output = gr.Markdown(label="**Material**")
with gr.Accordion("πŸ“ˆ Confidence Scores", open=False):
object_conf = gr.Textbox(label="Object Confidence", interactive=False)
material_conf = gr.Textbox(label="Material Confidence", interactive=False)
# Connect the interface
submit_btn.click(
fn=gradio_predict,
inputs=image_input,
outputs=[object_output, material_output, object_conf, material_conf]
)
# Example images
gr.Examples(
examples=[
# You can add example image paths here if available
],
inputs=image_input,
outputs=[object_output, material_output, object_conf, material_conf],
fn=gradio_predict,
cache_examples=False
)
gr.Markdown("""
### ℹ️ About
This model uses a ResNet-50 backbone to classify museum artifacts into object types (vase, statue, pottery, etc.)
and material compositions (ceramic, bronze, stone, etc.).
**Model**: MultiOutputModel with ResNet-50 backbone
**Training Data**: Oriental Museum artifacts dataset
""")
if __name__ == "__main__":
demo.launch()