File size: 10,764 Bytes
68b32f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80dd9c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b32f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch
import torch.nn as nn
import torch.nn.functional as F


def compute_ctc_loss(predictions, targets, blank_label=0):
    """
    Computes the Connectionist Temporal Classification (CTC) loss.

    Args:
        predictions: A tensor of shape [B, C, L] representing the logits of the 
                     predicted sequences.  B is the batch size, C is the number
                     of classes (including the blank label), and L is the sequence
                     length of the predictions.
        targets: A tensor of shape [B, T] representing the target sequences.
                 B is the batch size and T is the target sequence length.
                 Note that T can vary within the batch.
        blank_label: The index of the blank label.  Defaults to 0.

    Returns:
        The CTC loss (a scalar tensor).
    """

    batch_size, num_classes, prediction_length = predictions.shape
    _, target_length = targets.shape

    # 1. Log softmax on predictions:  Crucially, CTC loss requires log probabilities.
    log_probs = F.log_softmax(predictions, dim=1)  # Shape: [B, C, L]

    # 2.  Prepare inputs for torch.nn.CTCLoss:
    #    a.  Convert log_probs to shape (L, B, C):  CTCLoss expects time first.
    log_probs = log_probs.permute(2, 0, 1)  # Shape: [L, B, C]

    #    b.  Get lengths of the predicted sequences (all L in this case).
    input_lengths = torch.full(size=(batch_size,), fill_value=prediction_length, dtype=torch.long)

    #    c.  Get lengths of the target sequences.
    target_lengths = torch.tensor([t.shape[0] for t in targets], dtype=torch.long) # Handle variable target lengths

    # 3. Create the CTCLoss criterion.  `blank=blank_label` is essential!
    ctc_loss = torch.nn.CTCLoss(blank=blank_label, reduction='mean') # 'mean' for averaging over the batch

    # 4. Calculate the loss.  `targets` needs to be a concatenated tensor.
    #    We handle padding by only passing the valid lengths to CTCLoss.
    concatenated_targets = torch.cat(list(targets)) # Concatenate targets

    loss = ctc_loss(log_probs, concatenated_targets, input_lengths, target_lengths)

    return loss

def sort_loss(predictions, targets):
    """
    The sort task was used partly to show that ctc loss can work.
    """
    loss = compute_ctc_loss(predictions, targets, blank_label=predictions.shape[1]-1)
    return loss

def image_classification_loss(predictions, certainties, targets, use_most_certain=True):
    """
    Computes the maze loss with auto-extending cirriculum.

    Predictions are of shape: (B, class, internal_ticks),
    Certainties are of shape: (B, 2, internal_ticks), 
        where the inside dimension (2) is [normalised_entropy, 1-normalised_entropy]
    Targets are of shape: [B]

    use_most_certain will select either the most certain point or the final point. 
    """
    targets_expanded = torch.repeat_interleave(targets.unsqueeze(-1), predictions.size(-1), -1)
    # Losses are of shape [B, internal_ticks]
    losses = nn.CrossEntropyLoss(reduction='none')(predictions, targets_expanded)
        
    loss_index_1 = losses.argmin(dim=1)
    loss_index_2 = certainties[:,1].argmax(-1)
    if not use_most_certain:  # Revert to final loss if set
        loss_index_2[:] = -1
    
    batch_indexer = torch.arange(predictions.size(0), device=predictions.device)
    loss_minimum_ce = losses[batch_indexer, loss_index_1].mean()
    loss_selected = losses[batch_indexer, loss_index_2].mean()

    loss = (loss_minimum_ce + loss_selected)/2
    return loss, loss_index_2

def maze_loss(predictions, certainties, targets, cirriculum_lookahead=5, use_most_certain=True):
    """
    Computes the maze loss with auto-extending cirriculum.

    Predictions are of shape: (B, route_length, class, internal_ticks),
        where classes are in [0,1,2,3,4] for [Up, Down, Left, Right, Wait]
    Certainties are of shape: (B, 2, internal_ticks), 
        where the inside dimension (2) is [normalised_entropy, 1-normalised_entropy]
    Targets are of shape: [B, route_length]

    cirriculum_lookahead: how far to look ahead in the auto-cirriculum

    use_most_certain will select either the most certain point or the final point. For baselines,
        the final point proved the only usable option. 
    
    """
    # Predictions reshaped to: [B*route_length, 5, internal_ticks]
    predictions_reshaped = predictions.flatten(0,1)
    # Targets reshaped to: [B*route_length, internal_ticks]
    targets_reshaped = torch.repeat_interleave(targets.unsqueeze(-1), 
                                               predictions.size(-1), -1).flatten(0,1).long()
    
    # Losses are of shape [B, route_length, internal_ticks]
    losses = nn.CrossEntropyLoss(reduction='none')(predictions_reshaped, targets_reshaped)
    losses = losses.reshape(predictions[:,:,0].shape)
    
    # Below is the code for auto-cirriculum
    # Find where correct, and make sure to always push +5 beyond that
    iscorrects = (predictions.argmax(2) == targets.unsqueeze(-1)).cumsum(1)
    correct_mask = (iscorrects == torch.arange(1, iscorrects.size(1)+1, device=iscorrects.device).reshape(1, -1, 1))
    correct_mask[:,0,:] = 1
    upto_where = correct_mask.cumsum(1).argmax(1).max(-1)[0]+cirriculum_lookahead
    loss_mask = torch.zeros_like(losses)
    for bi in range(predictions.size(0)):
        loss_mask[bi, :upto_where[bi]] = 1

    # Reduce losses along route dimension
    # Will now be of shape [B, internal_ticks]
    losses = (losses * loss_mask).sum(1)/(loss_mask.sum(1))

    loss_index_1 = losses.argmin(dim=1)
    loss_index_2 = certainties[:,1].argmax(-1)
    if not use_most_certain:
        loss_index_2[:] = -1
    
    batch_indexer = torch.arange(predictions.size(0), device=predictions.device)
    loss_minimum_ce = losses[batch_indexer, loss_index_1]
    loss_selected = losses[batch_indexer, loss_index_2]

    loss = ((loss_minimum_ce + loss_selected)/2).mean()
    return loss, loss_index_2, upto_where.detach().cpu().numpy()

def parity_loss(predictions, certainties, targets, use_most_certain=True):
    """
    Computes the parity loss.

    Predictions are of shape: (B, parity_sequence_length, class, internal_ticks),
        where classes are in [0,1,2,3,4] for [Up, Down, Left, Right, Wait]
    Certainties are of shape: (B, 2, internal_ticks), 
        where the inside dimension (2) is [normalised_entropy, 1-normalised_entropy]
    Targets are of shape: [B, parity_sequence_length]

    use_most_certain will select either the most certain point or the final point. For baselines,
        the final point proved the only usable option. 
    """

    # Losses are of shape [B, parity_sequence_length, internal_ticks]
    losses = nn.CrossEntropyLoss(reduction='none')(predictions.flatten(0,1), 
                                                   torch.repeat_interleave(targets.unsqueeze(-1), 
                                                                           predictions.size(-1), -1).flatten(0,1).long()).reshape(predictions[:,:,0].shape)

    # Average the loss over the parity sequenece dimension
    losses = losses.mean(1)

    loss_index_1 = losses.argmin(dim=1)
    loss_index_2 = certainties[:,1].argmax(-1)
    if not use_most_certain:
        loss_index_2[:] = -1
    
    batch_indexer = torch.arange(predictions.size(0), device=predictions.device)
    loss_minimum_ce = losses[batch_indexer, loss_index_1].mean()
    loss_selected = losses[batch_indexer, loss_index_2].mean()

    loss = (loss_minimum_ce + loss_selected)/2
    return loss, loss_index_2


class EnergyContrastiveLoss(nn.Module):
    def __init__(self, margin=10.0, energy_scale=0.1):
        super().__init__()
        self.margin = margin
        self.energy_scale = energy_scale
        self.ce_loss = nn.CrossEntropyLoss(reduction='none')

    def forward(self, logits_history, energy_history, targets):
        """
        logits_history: [B, Class, T]
        energy_history: [B, 1, T]
        targets: [B]
        """
        B, C, T = logits_history.shape
        
        # Flatten for easy computation
        logits_flat = logits_history.permute(0, 2, 1).reshape(B * T, C)
        energy_flat = energy_history.permute(0, 2, 1).reshape(B * T)
        targets_expanded = targets.unsqueeze(1).repeat(1, T).reshape(B * T)

        # 1. Standard Classification Loss (Cross Entropy)
        ce_vals = self.ce_loss(logits_flat, targets_expanded)
        
        # 2. Determine "Correctness" for Contrastive Divergence
        # We treat a step as "positive" if the prediction matches the target
        predictions = logits_flat.argmax(dim=1)
        is_correct = (predictions == targets_expanded).float() # 1.0 if correct, 0.0 if wrong

        # 3. Energy Loss Logic
        # If Correct: Minimize Energy (Pull down to 0)
        # If Incorrect: Maximize Energy (Push up to margin)
        
        # L_pos = ||E(x)||^2  (Push correct states to 0 energy)
        loss_pos = energy_flat ** 2
        
        # L_neg = max(0, m - E(x))^2 (Push incorrect states above margin m)
        loss_neg = F.relu(self.margin - energy_flat) ** 2

        # Combine: correct samples use loss_pos, incorrect use loss_neg
        energy_objective = (is_correct * loss_pos) + ((1 - is_correct) * loss_neg)
        
        # Total Loss
        total_loss = ce_vals.mean() + (self.energy_scale * energy_objective.mean())
        
        return total_loss, {
            "ce_loss": ce_vals.mean().item(), 
            "energy_loss": energy_objective.mean().item(),
            "avg_energy": energy_flat.mean().item()
        }


def qamnist_loss(predictions, certainties, targets, use_most_certain=True):
    """
    Computes the qamnist loss over the last num_answer_steps steps.

    Predictions are of shape: (B, class, internal_ticks),
    Certainties are of shape: (B, 2, internal_ticks), 
        where the inside dimension (2) is [normalised_entropy, 1-normalised_entropy]
    Targets are of shape: [B]
    num_answer_steps: number of steps to consider for the loss

    use_most_certain will select either the most certain point or the final point. 
    """

    losses = nn.CrossEntropyLoss(reduction='none')(predictions, 
                                                   torch.repeat_interleave(targets.unsqueeze(-1), predictions.size(-1), -1))
        
    loss_index_1 = losses.argmin(dim=1)
    loss_index_2 = certainties[:,1].argmax(-1)
    if not use_most_certain:
        loss_index_2[:] = -1
    
    batch_indexer = torch.arange(predictions.size(0), device=predictions.device)
    loss_minimum_ce = losses[batch_indexer, loss_index_1].mean()
    loss_selected = losses[batch_indexer, loss_index_2].mean()

    loss = (loss_minimum_ce + loss_selected)/2
    return loss, loss_index_2