ciaran-regan-ie's picture
quick maze task
a9685d2
raw
history blame
10.3 kB
import numpy as np
import cv2
import torch
import os
import matplotlib.pyplot as plt
import imageio
from tqdm.auto import tqdm
def find_center_of_mass(array_2d):
"""
Alternative implementation using np.average and meshgrid.
This version is generally faster and more concise.
Args:
array_2d: A 2D numpy array of values between 0 and 1.
Returns:
A tuple (x, y) representing the coordinates of the center of mass.
"""
total_mass = np.sum(array_2d)
if total_mass == 0:
return (np.nan, np.nan)
y_coords, x_coords = np.mgrid[:array_2d.shape[0], :array_2d.shape[1]]
x_center = np.average(x_coords, weights=array_2d)
y_center = np.average(y_coords, weights=array_2d)
return (round(y_center, 4), round(x_center, 4))
def draw_path(x, route, valid_only=False, gt=False, cmap=None):
"""
Draws a path on a maze image based on a given route.
Args:
maze: A numpy array representing the maze image.
route: A list of integers representing the route, where 0 is up, 1 is down, 2 is left, and 3 is right.
valid_only: A boolean indicating whether to only draw valid steps (i.e., steps that don't go into walls).
Returns:
A numpy array representing the maze image with the path drawn in blue.
"""
x = np.copy(x)
start = np.argwhere((x == [1, 0, 0]).all(axis=2))
end = np.argwhere((x == [0, 1, 0]).all(axis=2))
if cmap is None:
cmap = plt.get_cmap('winter') if not valid_only else plt.get_cmap('summer')
# Initialize the current position
current_pos = start[0]
# Draw the path
colors = cmap(np.linspace(0, 1, len(route)))
si = 0
for step in route:
new_pos = current_pos
if step == 0: # Up
new_pos = (current_pos[0] - 1, current_pos[1])
elif step == 1: # Down
new_pos = (current_pos[0] + 1, current_pos[1])
elif step == 2: # Left
new_pos = (current_pos[0], current_pos[1] - 1)
elif step == 3: # Right
new_pos = (current_pos[0], current_pos[1] + 1)
elif step == 4: # Do nothing
pass
else:
raise ValueError("Invalid step: {}".format(step))
# Check if the new position is valid
if valid_only:
try:
if np.all(x[new_pos] == [0,0,0]): # Check if it's a wall
continue # Skip this step if it's invalid
except IndexError:
continue # Skip this step if it's out of bounds
# Draw the step
if new_pos[0] >= 0 and new_pos[0] < x.shape[0] and new_pos[1] >= 0 and new_pos[1] < x.shape[1]:
if not ((x[new_pos] == [1,0,0]).all() or (x[new_pos] == [0,1,0]).all()):
colour = colors[si][:3]
si += 1
x[new_pos] = x[new_pos]*0.5 + colour*0.5
# Update the current position
current_pos = new_pos
# cv2.imwrite('maze2.png', x[:,:,::-1]*255)
return x
def make_maze_gif(inputs, predictions, targets, attention_tracking, save_location, verbose=True):
"""
Expect inputs, predictions, targets as numpy arrays
"""
route_steps = []
route_colours = []
solution_maze = draw_path(np.moveaxis(inputs, 0, -1), targets)
n_heads = attention_tracking.shape[1]
mosaic = [['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['head_0', 'head_1', 'head_2', 'head_3', 'head_4', 'head_5', 'head_6', 'head_7'],
['head_8', 'head_9', 'head_10', 'head_11', 'head_12', 'head_13', 'head_14', 'head_15'],
]
if n_heads == 8:
mosaic = [['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['head_0', 'head_1', 'head_2', 'head_3', 'head_4', 'head_5', 'head_6', 'head_7'],
]
elif n_heads == 4:
mosaic = [['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['overlay', 'overlay', 'overlay', 'overlay', 'route', 'route', 'route', 'route'],
['head_0', 'head_0', 'head_1', 'head_1', 'head_2', 'head_2', 'head_3', 'head_3'],
['head_0', 'head_0', 'head_1', 'head_1', 'head_2', 'head_2', 'head_3', 'head_3'],
]
img_aspect = 1
figscale = 1
aspect_ratio = (len(mosaic[0]) * figscale, len(mosaic) * figscale * img_aspect) # W, H
route_steps = [np.unravel_index(np.argmax((inputs == np.reshape(np.array([1, 0, 0]), (3, 1, 1))).all(0)), inputs.shape[1:])] # Starting point
frames = []
cmap = plt.get_cmap('gist_rainbow')
cmap_viridis = plt.get_cmap('viridis')
step_linspace = np.linspace(0, 1, predictions.shape[-1]) # For sampling colours
with tqdm(total=predictions.shape[-1], initial=0, leave=True, position=1, dynamic_ncols=True) as pbar:
if verbose: pbar.set_description('Processing frames for maze plotting')
for stepi in np.arange(0, predictions.shape[-1], 1):
fig, axes = plt.subplot_mosaic(mosaic, figsize=aspect_ratio)
for ax in axes.values():
ax.axis('off')
guess_maze = draw_path(np.moveaxis(inputs, 0, -1), predictions.argmax(1)[:,stepi], cmap=cmap)
attention_now = attention_tracking[stepi]
for hi in range(min((attention_tracking.shape[1], 16))):
ax = axes[f'head_{hi}']
attn = attention_tracking[stepi, hi]
attn = (attn - attn.min())/(np.ptp(attn))
ax.imshow(attn, cmap=cmap_viridis)
# Upsample attention just for visualisation
aggregated_attention = torch.nn.functional.interpolate(torch.from_numpy(attention_now).unsqueeze(0), inputs.shape[-1], mode='bilinear')[0].mean(0).numpy()
# Get approximate center of mass
com_attn = np.copy(aggregated_attention)
com_attn[com_attn < np.percentile(com_attn, 96)] = 0.0
aggregated_attention[aggregated_attention < np.percentile(aggregated_attention, 80)] = 0.0
route_steps.append(find_center_of_mass(com_attn))
colour = list(cmap(step_linspace[stepi]))
route_colours.append(colour)
mapped_attention = torch.nn.functional.interpolate(torch.from_numpy(attention_now).unsqueeze(0), inputs.shape[-1], mode='bilinear')[0].mean(0).numpy()
mapped_attention = (mapped_attention - mapped_attention.min())/np.ptp(mapped_attention)
# np.clip(guess_maze * (1-mapped_attention[...,np.newaxis]*0.5) + (cmap_viridis(mapped_attention)[:,:,:3] * mapped_attention[...,np.newaxis])*1.3, 0, 1)
overlay_img = np.clip(guess_maze * (1-mapped_attention[...,np.newaxis]*0.6) + (cmap_viridis(mapped_attention)[:,:,:3] * mapped_attention[...,np.newaxis])*1.1, 0, 1)#np.clip((np.copy(guess_maze)*(1-aggregated_attention[:,:,np.newaxis])*0.7 + (aggregated_attention[:,:,np.newaxis]*3 * np.reshape(np.array(colour)[:3], (1, 1, 3)))), 0, 1)
axes['overlay'].imshow(overlay_img)
y_coords, x_coords = zip(*route_steps)
y_coords = inputs.shape[-1] - np.array(list(y_coords))-1
axes['route'].imshow(np.flip(np.moveaxis(inputs, 0, -1), axis=0), origin='lower')
# ax.imshow(np.flip(solution_maze, axis=0), origin='lower')
arrow_scale = 2
for i in range(len(route_steps)-1):
dx = x_coords[i+1] - x_coords[i]
dy = y_coords[i+1] - y_coords[i]
axes['route'].arrow(x_coords[i], y_coords[i], dx, dy, linewidth=2*arrow_scale, head_width=0.2*arrow_scale, head_length=0.3*arrow_scale, fc=route_colours[i], ec=route_colours[i], length_includes_head = True)
fig.tight_layout(pad=0.1) # Adjust spacing
# Render the plot to a numpy array
canvas = fig.canvas
canvas.draw()
image_numpy = np.frombuffer(canvas.buffer_rgba(), dtype='uint8')
image_numpy = image_numpy.reshape(*reversed(canvas.get_width_height()), 4)[:,:,:3] # Get RGB
frames.append(image_numpy) # Add to list for GIF
# fig.savefig(f'{save_location}/frame.png', dpi=200)
plt.close(fig)
# # frame = np.clip((np.copy(guess_maze)*0.5 + (aggregated_attention[:,:,np.newaxis] * np.reshape(np.array(colour)[:3], (1, 1, 3)))), 0, 1)
# frame = torch.nn.functional.interpolate(torch.from_numpy(frame).permute(2,0,1).unsqueeze(0), 256)[0].permute(1,2,0).detach().cpu().numpy()
# frames.append((frame*255).astype(np.uint8))
pbar.update(1)
y_coords, x_coords = zip(*route_steps)
y_coords = inputs.shape[-1] - np.array(list(y_coords))-1
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111)
ax.imshow(np.flip(np.moveaxis(inputs, 0, -1), axis=0), origin='lower')
# ax.imshow(np.flip(solution_maze, axis=0), origin='lower')
arrow_scale = 2
for i in range(len(route_steps)-1):
dx = x_coords[i+1] - x_coords[i]
dy = y_coords[i+1] - y_coords[i]
plt.arrow(x_coords[i], y_coords[i], dx, dy, linewidth=2*arrow_scale, head_width=0.2*arrow_scale, head_length=0.3*arrow_scale, fc=route_colours[i], ec=route_colours[i], length_includes_head = True)
ax.axis('off')
fig.tight_layout(pad=0)
fig.savefig(f'{save_location}/route_approximation.png', dpi=200)
imageio.mimsave(f'{save_location}/prediction.gif', frames, fps=15, loop=100)
plt.close(fig)