LukeDarlow's picture
added support for a small maze dataset, with the purpose of debugging and iteration
69b35a9
raw
history blame
41.7 kB
import argparse
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style('darkgrid')
import torch
if torch.cuda.is_available():
# For faster
torch.set_float32_matmul_precision('high')
from tqdm.auto import tqdm
from data.custom_datasets import MazeImageFolder
from models.ctm import ContinuousThoughtMachine
from models.lstm import LSTMBaseline
from models.ff import FFBaseline
from tasks.mazes.plotting import make_maze_gif
from tasks.image_classification.plotting import plot_neural_dynamics
from utils.housekeeping import set_seed, zip_python_code
from utils.losses import maze_loss
from utils.schedulers import WarmupCosineAnnealingLR, WarmupMultiStepLR, warmup
import torchvision
torchvision.disable_beta_transforms_warning()
import warnings
warnings.filterwarnings("ignore", message="using precomputed metric; inverse_transform will be unavailable")
warnings.filterwarnings('ignore', message='divide by zero encountered in power', category=RuntimeWarning)
warnings.filterwarnings(
"ignore",
"Corrupt EXIF data",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Metadata Warning",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
warnings.filterwarnings(
"ignore",
"UserWarning: Truncated File Read",
UserWarning,
r"^PIL\.TiffImagePlugin$" # Using a regular expression to match the module.
)
def parse_args():
parser = argparse.ArgumentParser()
# Model Selection
parser.add_argument('--model', type=str, required=True, choices=['ctm', 'lstm', 'ff'], help='Model type to train.')
# Model Architecture
# Common across all or most
parser.add_argument('--d_model', type=int, default=512, help='Dimension of the model.')
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate.')
parser.add_argument('--backbone_type', type=str, default='resnet34-2', help='Type of backbone featureiser.') # Default changed from original script
# CTM / LSTM specific
parser.add_argument('--d_input', type=int, default=128, help='Dimension of the input (CTM, LSTM).')
parser.add_argument('--heads', type=int, default=8, help='Number of attention heads (CTM, LSTM).') # Default changed
parser.add_argument('--iterations', type=int, default=75, help='Number of internal ticks (CTM, LSTM).')
parser.add_argument('--positional_embedding_type', type=str, default='none',
help='Type of positional embedding (CTM, LSTM).', choices=['none',
'learnable-fourier',
'multi-learnable-fourier',
'custom-rotational'])
# CTM specific
parser.add_argument('--synapse_depth', type=int, default=8, help='Depth of U-NET model for synapse. 1=linear, no unet (CTM only).') # Default changed
parser.add_argument('--n_synch_out', type=int, default=32, help='Number of neurons to use for output synch (CTM only).') # Default changed
parser.add_argument('--n_synch_action', type=int, default=32, help='Number of neurons to use for observation/action synch (CTM only).') # Default changed
parser.add_argument('--neuron_select_type', type=str, default='random-pairing', help='Protocol for selecting neuron subset (CTM only).')
parser.add_argument('--n_random_pairing_self', type=int, default=0, help='Number of neurons paired self-to-self for synch (CTM only).')
parser.add_argument('--memory_length', type=int, default=25, help='Length of the pre-activation history for NLMS (CTM only).')
parser.add_argument('--deep_memory', action=argparse.BooleanOptionalAction, default=True,
help='Use deep memory (CTM only).')
parser.add_argument('--memory_hidden_dims', type=int, default=32, help='Hidden dimensions of the memory if using deep memory (CTM only).') # Default changed
parser.add_argument('--dropout_nlm', type=float, default=None, help='Dropout rate for NLMs specifically. Unset to match dropout on the rest of the model (CTM only).')
parser.add_argument('--do_normalisation', action=argparse.BooleanOptionalAction, default=False, help='Apply normalization in NLMs (CTM only).')
# LSTM specific
parser.add_argument('--num_layers', type=int, default=2, help='Number of LSTM stacked layers (LSTM only).') # Added LSTM arg
# Task Specific Args (Common to all models for this task)
parser.add_argument('--maze_route_length', type=int, default=100, help='Length to truncate targets.')
parser.add_argument('--cirriculum_lookahead', type=int, default=5, help='How far to look ahead for cirriculum.')
# Training
parser.add_argument('--expand_range', action=argparse.BooleanOptionalAction, default=True, help='Mazes between 0 and 1 = False. Between -1 and 1 = True. Legacy checkpoints use 0 and 1.')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size for training.') # Default changed
parser.add_argument('--batch_size_test', type=int, default=64, help='Batch size for testing.') # Default changed
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate for the model.') # Default changed
parser.add_argument('--training_iterations', type=int, default=100001, help='Number of training iterations.')
parser.add_argument('--warmup_steps', type=int, default=5000, help='Number of warmup steps.')
parser.add_argument('--use_scheduler', action=argparse.BooleanOptionalAction, default=True, help='Use a learning rate scheduler.')
parser.add_argument('--scheduler_type', type=str, default='cosine', choices=['multistep', 'cosine'], help='Type of learning rate scheduler.')
parser.add_argument('--milestones', type=int, default=[8000, 15000, 20000], nargs='+', help='Learning rate scheduler milestones.')
parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate scheduler gamma for multistep.')
parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay factor.')
parser.add_argument('--weight_decay_exclusion_list', type=str, nargs='+', default=[], help='List to exclude from weight decay. Typically good: bn, ln, bias, start')
parser.add_argument('--num_workers_train', type=int, default=0, help='Num workers training.') # Renamed from num_workers, kept default
parser.add_argument('--gradient_clipping', type=float, default=-1, help='Gradient quantile clipping value (-1 to disable).')
parser.add_argument('--do_compile', action=argparse.BooleanOptionalAction, default=False, help='Try to compile model components.')
# Logging and Saving
parser.add_argument('--log_dir', type=str, default='logs/scratch', help='Directory for logging.')
parser.add_argument('--dataset', type=str, default='mazes-medium', help='Dataset to use.', choices=['mazes-medium', 'mazes-large', 'mazes-small'])
parser.add_argument('--data_root', type=str, default='data/mazes', help='Data root.')
parser.add_argument('--save_every', type=int, default=1000, help='Save checkpoints every this many iterations.')
parser.add_argument('--seed', type=int, default=412, help='Random seed.')
parser.add_argument('--reload', action=argparse.BooleanOptionalAction, default=False, help='Reload from disk?')
parser.add_argument('--reload_model_only', action=argparse.BooleanOptionalAction, default=False, help='Reload only the model from disk?')
parser.add_argument('--strict_reload', action=argparse.BooleanOptionalAction, default=True, help='Should use strict reload for model weights.') # Added back
parser.add_argument('--ignore_metrics_when_reloading', action=argparse.BooleanOptionalAction, default=False, help='Ignore metrics when reloading (for debugging)?') # Added back
# Tracking
parser.add_argument('--track_every', type=int, default=1000, help='Track metrics every this many iterations.')
parser.add_argument('--n_test_batches', type=int, default=20, help='How many minibatches to approx metrics. Set to -1 for full eval') # Default changed
# Device
parser.add_argument('--device', type=int, nargs='+', default=[-1], help='List of GPU(s) to use. Set to -1 to use CPU.')
parser.add_argument('--use_amp', action=argparse.BooleanOptionalAction, default=False, help='AMP autocast.')
args = parser.parse_args()
return args
if __name__=='__main__':
# Hosuekeeping
args = parse_args()
set_seed(args.seed, False)
if not os.path.exists(args.log_dir): os.makedirs(args.log_dir)
assert args.dataset in ['mazes-medium', 'mazes-large', 'mazes-small']
prediction_reshaper = [args.maze_route_length, 5] # Problem specific
args.out_dims = args.maze_route_length * 5 # Output dimension before reshaping
# For total reproducibility
zip_python_code(f'{args.log_dir}/repo_state.zip')
with open(f'{args.log_dir}/args.txt', 'w') as f:
print(args, file=f)
# Configure device string (support MPS on macOS)
if args.device[0] != -1:
device = f'cuda:{args.device[0]}'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
print(f'Running model {args.model} on {device}')
# Build model conditionally
model = None
if args.model == 'ctm':
model = ContinuousThoughtMachine(
iterations=args.iterations,
d_model=args.d_model,
d_input=args.d_input,
heads=args.heads,
n_synch_out=args.n_synch_out,
n_synch_action=args.n_synch_action,
synapse_depth=args.synapse_depth,
memory_length=args.memory_length,
deep_nlms=args.deep_memory,
memory_hidden_dims=args.memory_hidden_dims,
do_layernorm_nlm=args.do_normalisation,
backbone_type=args.backbone_type,
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
dropout_nlm=args.dropout_nlm,
neuron_select_type=args.neuron_select_type,
n_random_pairing_self=args.n_random_pairing_self,
).to(device)
elif args.model == 'lstm':
model = LSTMBaseline(
num_layers=args.num_layers,
iterations=args.iterations,
d_model=args.d_model,
d_input=args.d_input,
heads=args.heads,
backbone_type=args.backbone_type,
positional_embedding_type=args.positional_embedding_type,
out_dims=args.out_dims,
prediction_reshaper=prediction_reshaper,
dropout=args.dropout,
).to(device)
elif args.model == 'ff':
model = FFBaseline(
d_model=args.d_model,
backbone_type=args.backbone_type,
out_dims=args.out_dims,
dropout=args.dropout,
).to(device)
else:
raise ValueError(f"Unknown model type: {args.model}")
try:
# Determine pseudo input shape based on dataset
h_w = 39 if args.dataset in ['mazes-small', 'mazes-medium'] else 99 # Example dimensions
pseudo_inputs = torch.zeros((1, 3, h_w, h_w), device=device).float()
model(pseudo_inputs)
except Exception as e:
print(f"Warning: Pseudo forward pass failed: {e}")
print(f'Total params: {sum(p.numel() for p in model.parameters())}')
# Data
dataset_mean = [0,0,0] # For plotting later
dataset_std = [1,1,1]
which_maze = args.dataset.split('-')[-1]
data_root = f'{args.data_root}/{which_maze}'
train_data = MazeImageFolder(root=f'{data_root}/train/', which_set='train', maze_route_length=args.maze_route_length, expand_range=args.expand_range)
test_data = MazeImageFolder(root=f'{data_root}/test/', which_set='test', maze_route_length=args.maze_route_length, expand_range=args.expand_range)
num_workers_test = 1 # Defaulting to 1, can be changed
trainloader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers_train, drop_last=True)
testloader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test, drop_last=False)
# For lazy modules so that we can get param count
model.train()
# Optimizer and scheduler
decay_params = []
no_decay_params = []
no_decay_names = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # Skip parameters that don't require gradients
if any(exclusion_str in name for exclusion_str in args.weight_decay_exclusion_list):
no_decay_params.append(param)
no_decay_names.append(name)
else:
decay_params.append(param)
if len(no_decay_names):
print(f'WARNING, excluding: {no_decay_names}')
# Optimizer and scheduler (Common setup)
if len(no_decay_names) and args.weight_decay!=0:
optimizer = torch.optim.AdamW([{'params': decay_params, 'weight_decay':args.weight_decay},
{'params': no_decay_params, 'weight_decay':0}],
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6)
else:
optimizer = torch.optim.AdamW(model.parameters(),
lr=args.lr,
eps=1e-8 if not args.use_amp else 1e-6,
weight_decay=args.weight_decay)
warmup_schedule = warmup(args.warmup_steps)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_schedule.step)
if args.use_scheduler:
if args.scheduler_type == 'multistep':
scheduler = WarmupMultiStepLR(optimizer, warmup_steps=args.warmup_steps, milestones=args.milestones, gamma=args.gamma)
elif args.scheduler_type == 'cosine':
scheduler = WarmupCosineAnnealingLR(optimizer, args.warmup_steps, args.training_iterations, warmup_start_lr=1e-20, eta_min=1e-7)
else:
raise NotImplementedError
# Metrics tracking
start_iter = 0
train_losses = []
test_losses = []
train_accuracies = [] # Per tick/step accuracy list
test_accuracies = []
train_accuracies_most_certain = [] # Accuracy, fine-grained
test_accuracies_most_certain = []
train_accuracies_most_certain_permaze = [] # Full maze accuracy
test_accuracies_most_certain_permaze = []
iters = []
scaler = torch.amp.GradScaler("cuda" if "cuda" in device else "cpu", enabled=args.use_amp)
if args.reload:
checkpoint_path = f'{args.log_dir}/checkpoint.pt'
if os.path.isfile(checkpoint_path):
print(f'Reloading from: {checkpoint_path}')
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
if not args.strict_reload: print('WARNING: not using strict reload for model weights!')
load_result = model.load_state_dict(checkpoint['model_state_dict'], strict=args.strict_reload)
print(f" Loaded state_dict. Missing: {load_result.missing_keys}, Unexpected: {load_result.unexpected_keys}")
if not args.reload_model_only:
print('Reloading optimizer etc.')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
scaler.load_state_dict(checkpoint['scaler_state_dict']) # Load scaler state
start_iter = checkpoint['iteration']
if not args.ignore_metrics_when_reloading:
train_losses = checkpoint['train_losses']
test_losses = checkpoint['test_losses']
train_accuracies = checkpoint['train_accuracies']
test_accuracies = checkpoint['test_accuracies']
iters = checkpoint['iters']
train_accuracies_most_certain = checkpoint['train_accuracies_most_certain']
test_accuracies_most_certain = checkpoint['test_accuracies_most_certain']
train_accuracies_most_certain_permaze = checkpoint['train_accuracies_most_certain_permaze']
test_accuracies_most_certain_permaze = checkpoint['test_accuracies_most_certain_permaze']
else:
print("Ignoring metrics history upon reload.")
else:
print('Only reloading model!')
if 'torch_rng_state' in checkpoint:
# Reset seeds
torch.set_rng_state(checkpoint['torch_rng_state'].cpu().byte())
np.random.set_state(checkpoint['numpy_rng_state'])
random.setstate(checkpoint['random_rng_state'])
del checkpoint
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
if args.do_compile:
print('Compiling...')
if hasattr(model, 'backbone'):
model.backbone = torch.compile(model.backbone, mode='reduce-overhead', fullgraph=True)
# Compile synapses only for CTM
if args.model == 'ctm':
model.synapses = torch.compile(model.synapses, mode='reduce-overhead', fullgraph=True)
# Training
iterator = iter(trainloader)
with tqdm(total=args.training_iterations, initial=start_iter, leave=False, position=0, dynamic_ncols=True) as pbar:
for bi in range(start_iter, args.training_iterations):
current_lr = optimizer.param_groups[-1]['lr']
try:
inputs, targets = next(iterator)
except StopIteration:
iterator = iter(trainloader)
inputs, targets = next(iterator)
inputs = inputs.to(device)
targets = targets.to(device) # Shape (B, SeqLength)
# All for nice metric printing:
loss = None
accuracy_finegrained = None # Per-step accuracy at chosen tick
where_most_certain_val = -1.0 # Default value
where_most_certain_std = 0.0
where_most_certain_min = -1
where_most_certain_max = -1
upto_where_mean = -1.0
upto_where_std = 0.0
upto_where_min = -1
upto_where_max = -1
# Model-specific forward, reshape, and loss calculation
with torch.autocast(device_type="cuda" if "cuda" in device else "cpu", dtype=torch.float16, enabled=args.use_amp):
if args.do_compile: # CUDAGraph marking applied if compiling any model
torch.compiler.cudagraph_mark_step_begin()
if args.model == 'ctm':
# CTM output: (B, SeqLength*5, Ticks), Certainties: (B, Ticks)
predictions_raw, certainties, synchronisation = model(inputs)
# Reshape predictions: (B, SeqLength, 5, Ticks)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1))
loss, where_most_certain, upto_where = maze_loss(predictions, certainties, targets, cirriculum_lookahead=args.cirriculum_lookahead, use_most_certain=True)
# Accuracy uses predictions[B, S, C, T] indexed at where_most_certain[B] -> gives (B, S, C) -> argmax(2) -> (B,S)
accuracy_finegrained = (predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] == targets).float().mean().item()
elif args.model == 'lstm':
# LSTM output: (B, SeqLength*5, Ticks), Certainties: (B, Ticks)
predictions_raw, certainties, synchronisation = model(inputs)
# Reshape predictions: (B, SeqLength, 5, Ticks)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1))
loss, where_most_certain, upto_where = maze_loss(predictions, certainties, targets, cirriculum_lookahead=args.cirriculum_lookahead, use_most_certain=False)
# where_most_certain should be -1 (last tick) here. Accuracy calc follows same logic.
accuracy_finegrained = (predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] == targets).float().mean().item()
elif args.model == 'ff':
# Assume FF output: (B, SeqLength*5)
predictions_raw = model(inputs)
# Reshape predictions: (B, SeqLength, 5)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5)
# FF has no certainties, pass None. maze_loss must handle this.
# Unsqueeze predictions for compatibility with maze loss calcluation
loss, where_most_certain, upto_where = maze_loss(predictions.unsqueeze(-1), None, targets, cirriculum_lookahead=args.cirriculum_lookahead, use_most_certain=False)
# where_most_certain should be -1 here. Accuracy uses 3D prediction tensor.
accuracy_finegrained = (predictions.argmax(2) == targets).float().mean().item()
# Extract stats from loss outputs if they are tensors
if torch.is_tensor(where_most_certain):
where_most_certain_val = where_most_certain.float().mean().item()
where_most_certain_std = where_most_certain.float().std().item()
where_most_certain_min = where_most_certain.min().item()
where_most_certain_max = where_most_certain.max().item()
elif isinstance(where_most_certain, int): # Handle case where it might return -1 directly
where_most_certain_val = float(where_most_certain)
where_most_certain_min = where_most_certain
where_most_certain_max = where_most_certain
if isinstance(upto_where, (np.ndarray, list)) and len(upto_where) > 0: # Check if it's a list/array
upto_where_mean = np.mean(upto_where)
upto_where_std = np.std(upto_where)
upto_where_min = np.min(upto_where)
upto_where_max = np.max(upto_where)
scaler.scale(loss).backward()
if args.gradient_clipping!=-1:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.gradient_clipping)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
# Conditional Tqdm Description
pbar_desc = f'Loss={loss.item():0.3f}. Acc(step)={accuracy_finegrained:0.3f}. LR={current_lr:0.6f}.'
if args.model in ['ctm', 'lstm'] or torch.is_tensor(where_most_certain): # Show stats if available
pbar_desc += f' Where_certain={where_most_certain_val:0.2f}+-{where_most_certain_std:0.2f} ({where_most_certain_min:d}<->{where_most_certain_max:d}).'
if isinstance(upto_where, (np.ndarray, list)) and len(upto_where) > 0:
pbar_desc += f' Path pred stats: {upto_where_mean:0.2f}+-{upto_where_std:0.2f} ({upto_where_min:d} --> {upto_where_max:d})'
pbar.set_description(f'Dataset={args.dataset}. Model={args.model}. {pbar_desc}')
# Metrics tracking and plotting
if bi%args.track_every==0 and (bi != 0 or args.reload_model_only):
model.eval() # Use eval mode for consistency during tracking
with torch.inference_mode(): # Use inference mode for tracking
# --- Quantitative Metrics ---
iters.append(bi)
# Re-initialize metric lists for this evaluation step
current_train_losses_eval = []
current_test_losses_eval = []
current_train_accuracies_eval = []
current_test_accuracies_eval = []
current_train_accuracies_most_certain_eval = []
current_test_accuracies_most_certain_eval = []
current_train_accuracies_most_certain_permaze_eval = []
current_test_accuracies_most_certain_permaze_eval = []
# TRAIN METRICS
pbar.set_description('Tracking: Computing TRAIN metrics')
loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test) # Use consistent num_workers
all_targets_list = []
all_predictions_list = [] # Per step/tick predictions argmax (N, S, T) or (N, S)
all_predictions_most_certain_list = [] # Predictions at chosen step/tick argmax (N, S)
all_losses = []
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
all_targets_list.append(targets.detach().cpu().numpy()) # N x S
# Model-specific forward, reshape, loss for evaluation
if args.model == 'ctm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=True)
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S,C,T -> argmax class -> B,S,T
pred_at_certain = predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] # B,S
all_predictions_most_certain_list.append(pred_at_certain.detach().cpu().numpy())
elif args.model == 'lstm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=False) # where = -1
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S,C,T
pred_at_certain = predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] # B,S (at last tick)
all_predictions_most_certain_list.append(pred_at_certain.detach().cpu().numpy())
elif args.model == 'ff':
predictions_raw = model(inputs) # B, S*C
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5) # B,S,C
loss, where_most_certain, _ = maze_loss(predictions.unsqueeze(-1), None, targets, use_most_certain=False) # where = -1
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S
all_predictions_most_certain_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S (same as above for FF)
all_losses.append(loss.item())
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1 : break
pbar_inner.set_description(f'Computing metrics for train (Batch {inferi+1})')
pbar_inner.update(1)
all_targets = np.concatenate(all_targets_list) # N, S
all_predictions = np.concatenate(all_predictions_list) # N, S, T or N, S
all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list) # N, S
train_losses.append(np.mean(all_losses))
# Calculate per step/tick accuracy averaged over batches
if args.model in ['ctm', 'lstm']:
# all_predictions shape (N, S, T), all_targets shape (N, S) -> compare targets to each tick prediction
train_accuracies.append(np.mean(all_predictions == all_targets[:,:,np.newaxis], axis=0)) # Mean over N -> (S, T)
else: # FF
# all_predictions shape (N, S), all_targets shape (N, S)
train_accuracies.append(np.mean(all_predictions == all_targets, axis=0)) # Mean over N -> (S,)
# Calculate accuracy at chosen step/tick ("most certain") averaged over all steps and batches
train_accuracies_most_certain.append((all_targets == all_predictions_most_certain).mean()) # Scalar
# Calculate full maze accuracy at chosen step/tick averaged over batches
train_accuracies_most_certain_permaze.append((all_targets == all_predictions_most_certain).reshape(all_targets.shape[0], -1).all(-1).mean()) # Scalar
# TEST METRICS
pbar.set_description('Tracking: Computing TEST metrics')
loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size_test, shuffle=True, num_workers=num_workers_test)
all_targets_list = []
all_predictions_list = []
all_predictions_most_certain_list = []
all_losses = []
with tqdm(total=len(loader), initial=0, leave=False, position=1, dynamic_ncols=True) as pbar_inner:
for inferi, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
all_targets_list.append(targets.detach().cpu().numpy())
# Model-specific forward, reshape, loss for evaluation
if args.model == 'ctm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=True)
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S,T
pred_at_certain = predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] # B,S
all_predictions_most_certain_list.append(pred_at_certain.detach().cpu().numpy())
elif args.model == 'lstm':
predictions_raw, certainties, _ = model(inputs)
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5, predictions_raw.size(-1)) # B,S,C,T
loss, where_most_certain, _ = maze_loss(predictions, certainties, targets, use_most_certain=False) # where = -1
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S,T
pred_at_certain = predictions.argmax(2)[torch.arange(predictions.size(0), device=predictions.device), :, where_most_certain] # B,S (at last tick)
all_predictions_most_certain_list.append(pred_at_certain.detach().cpu().numpy())
elif args.model == 'ff':
predictions_raw = model(inputs) # B, S*C
predictions = predictions_raw.reshape(predictions_raw.size(0), -1, 5) # B,S,C
loss, where_most_certain, _ = maze_loss(predictions.unsqueeze(-1), None, targets, use_most_certain=False) # where = -1
all_predictions_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S
all_predictions_most_certain_list.append(predictions.argmax(2).detach().cpu().numpy()) # B,S (same as above for FF)
all_losses.append(loss.item())
if args.n_test_batches != -1 and inferi >= args.n_test_batches -1: break
pbar_inner.set_description(f'Computing metrics for test (Batch {inferi+1})')
pbar_inner.update(1)
all_targets = np.concatenate(all_targets_list)
all_predictions = np.concatenate(all_predictions_list)
all_predictions_most_certain = np.concatenate(all_predictions_most_certain_list)
test_losses.append(np.mean(all_losses))
# Calculate per step/tick accuracy
if args.model in ['ctm', 'lstm']:
test_accuracies.append(np.mean(all_predictions == all_targets[:,:,np.newaxis], axis=0)) # -> (S, T)
else: # FF
test_accuracies.append(np.mean(all_predictions == all_targets, axis=0)) # -> (S,)
# Calculate "most certain" accuracy
test_accuracies_most_certain.append((all_targets == all_predictions_most_certain).mean()) # Scalar
# Calculate full maze accuracy
test_accuracies_most_certain_permaze.append((all_targets == all_predictions_most_certain).reshape(all_targets.shape[0], -1).all(-1).mean()) # Scalar
# --- Plotting ---
# Accuracy Plot (Handling different dimensions)
figacc = plt.figure(figsize=(10, 10))
axacc_train = figacc.add_subplot(211)
axacc_test = figacc.add_subplot(212)
cm = sns.color_palette("viridis", as_cmap=True)
# Plot per step/tick accuracy
# train_accuracies is List[(S, T)] or List[(S,)]
# We need to average over S dimension for plotting
train_acc_plot = [np.mean(acc_s) for acc_s in train_accuracies] # List[Scalar] or List[Scalar] after mean
test_acc_plot = [np.mean(acc_s) for acc_s in test_accuracies] # List[Scalar] or List[Scalar] after mean
axacc_train.plot(iters, train_acc_plot, 'g-', alpha=0.5, label='Avg Step Acc')
axacc_test.plot(iters, test_acc_plot, 'g-', alpha=0.5, label='Avg Step Acc')
# Plot most certain accuracy
axacc_train.plot(iters, train_accuracies_most_certain, 'k--', alpha=0.7, label='Most Certain (Avg Step)')
axacc_test.plot(iters, test_accuracies_most_certain, 'k--', alpha=0.7, label='Most Certain (Avg Step)')
# Plot full maze accuracy
axacc_train.plot(iters, train_accuracies_most_certain_permaze, 'r-', alpha=0.6, label='Full Maze')
axacc_test.plot(iters, test_accuracies_most_certain_permaze, 'r-', alpha=0.6, label='Full Maze')
axacc_train.set_title('Train Accuracy')
axacc_test.set_title('Test Accuracy')
axacc_train.legend(loc='lower right')
axacc_test.legend(loc='lower right')
axacc_train.set_xlim([0, args.training_iterations])
axacc_test.set_xlim([0, args.training_iterations])
axacc_train.set_ylim([0, 1]) # Set Ylim for accuracy
axacc_test.set_ylim([0, 1])
figacc.tight_layout()
figacc.savefig(f'{args.log_dir}/accuracies.png', dpi=150)
plt.close(figacc)
# Loss Plot
figloss = plt.figure(figsize=(10, 5))
axloss = figloss.add_subplot(111)
axloss.plot(iters, train_losses, 'b-', linewidth=1, alpha=0.8, label=f'Train: {train_losses[-1]:.4f}')
axloss.plot(iters, test_losses, 'r-', linewidth=1, alpha=0.8, label=f'Test: {test_losses[-1]:.4f}')
axloss.legend(loc='upper right')
axloss.set_xlim([0, args.training_iterations])
axloss.set_ylim(bottom=0)
figloss.tight_layout()
figloss.savefig(f'{args.log_dir}/losses.png', dpi=150)
plt.close(figloss)
# --- Visualization Section (Conditional) ---
if args.model in ['ctm', 'lstm']:
# try:
inputs_viz, targets_viz = next(iter(testloader))
inputs_viz = inputs_viz.to(device)
targets_viz = targets_viz.to(device)
# Find longest path in batch for potentially better visualization
longest_index = (targets_viz!=4).sum(-1).argmax() # Action 4 assumed padding/end
# Track internal states
predictions_viz_raw, certainties_viz, _, pre_activations_viz, post_activations_viz, attention_tracking_viz = model(inputs_viz, track=True)
# Reshape predictions (assuming raw is B, D, T)
predictions_viz = predictions_viz_raw.reshape(predictions_viz_raw.size(0), -1, 5, predictions_viz_raw.size(-1)) # B, S, C, T
att_shape = (model.kv_features.shape[2], model.kv_features.shape[3])
attention_tracking_viz = attention_tracking_viz.reshape(
attention_tracking_viz.shape[0],
attention_tracking_viz.shape[1], -1, att_shape[0], att_shape[1])
# Plot dynamics (common plotting function)
plot_neural_dynamics(post_activations_viz, 100, args.log_dir, axis_snap=True)
# Create maze GIF (task-specific plotting)
make_maze_gif((inputs_viz[longest_index].detach().cpu().numpy()+1)/2,
predictions_viz[longest_index].detach().cpu().numpy(), # Pass reshaped B,S,C,T -> S,C,T
targets_viz[longest_index].detach().cpu().numpy(), # S
attention_tracking_viz[:, longest_index], # Pass T, (H), H, W
args.log_dir)
# except Exception as e:
# print(f"Visualization failed for model {args.model}: {e}")
# --- End Visualization ---
model.train() # Switch back to train mode
# Save model checkpoint
if (bi % args.save_every == 0 or bi == args.training_iterations - 1) and bi != start_iter:
pbar.set_description('Saving model checkpoint...')
checkpoint_data = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'scaler_state_dict': scaler.state_dict(), # Save scaler state
'iteration': bi,
# Save all tracked metrics
'train_losses': train_losses,
'test_losses': test_losses,
'train_accuracies': train_accuracies, # List of (S, T) or (S,) arrays
'test_accuracies': test_accuracies, # List of (S, T) or (S,) arrays
'train_accuracies_most_certain': train_accuracies_most_certain, # List of scalars
'test_accuracies_most_certain': test_accuracies_most_certain, # List of scalars
'train_accuracies_most_certain_permaze': train_accuracies_most_certain_permaze, # List of scalars
'test_accuracies_most_certain_permaze': test_accuracies_most_certain_permaze, # List of scalars
'iters': iters,
'args': args, # Save args used for this run
# RNG states
'torch_rng_state': torch.get_rng_state(),
'numpy_rng_state': np.random.get_state(),
'random_rng_state': random.getstate(),
}
torch.save(checkpoint_data, f'{args.log_dir}/checkpoint.pt')
pbar.update(1)