LukeDarlow's picture
Welcome to the CTM. This is the first commit of the public repo. Enjoy!
68b32f4
raw
history blame
5.31 kB
import torch
import numpy as np
from models.ctm import ContinuousThoughtMachine
class ContinuousThoughtMachineSORT(ContinuousThoughtMachine):
"""
Slight adaption of the CTM to work with the sort task.
"""
def __init__(self,
iterations,
d_model,
d_input,
heads,
n_synch_out,
n_synch_action,
synapse_depth,
memory_length,
deep_nlms,
memory_hidden_dims,
do_layernorm_nlm,
backbone_type,
positional_embedding_type,
out_dims,
prediction_reshaper=[-1],
dropout=0,
dropout_nlm=None,
neuron_select_type='random-pairing',
n_random_pairing_self=0,
):
super().__init__(
iterations=iterations,
d_model=d_model,
d_input=d_input,
heads=0,
n_synch_out=n_synch_out,
n_synch_action=0,
synapse_depth=synapse_depth,
memory_length=memory_length,
deep_nlms=deep_nlms,
memory_hidden_dims=memory_hidden_dims,
do_layernorm_nlm=do_layernorm_nlm,
backbone_type='none',
positional_embedding_type='none',
out_dims=out_dims,
prediction_reshaper=prediction_reshaper,
dropout=dropout,
dropout_nlm=dropout_nlm,
neuron_select_type=neuron_select_type,
n_random_pairing_self=n_random_pairing_self,
)
# --- Use a minimal CTM w/out input (action) synch ---
self.neuron_select_type_action = None
self.synch_representation_size_action = None
self.attention = None # Should already be None because super(... heads=0... )
self.q_proj = None # Should already be None because super(... heads=0... )
self.kv_proj = None # Should already be None because super(... heads=0... )
def forward(self, x, track=False):
B = x.size(0)
device = x.device
# --- Tracking Initialization ---
pre_activations_tracking = []
post_activations_tracking = []
synch_out_tracking = []
attention_tracking = []
# --- For SORT: no need to featurise data ---
# --- Initialise Recurrent State ---
state_trace = self.start_trace.unsqueeze(0).expand(B, -1, -1) # Shape: (B, H, T)
activated_state = self.start_activated_state.unsqueeze(0).expand(B, -1) # Shape: (B, H)
# --- Prepare Storage for Outputs per Iteration ---
predictions = torch.empty(B, self.out_dims, self.iterations, device=device, dtype=x.dtype)
certainties = torch.empty(B, 2, self.iterations, device=device, dtype=x.dtype)
# --- Initialise Recurrent Synch Values ---
r_out = torch.exp(-torch.clamp(self.decay_params_out, 0, 15)).unsqueeze(0).repeat(B, 1)
_, decay_alpha_out, decay_beta_out = self.compute_synchronisation(activated_state, None, None, r_out, synch_type='out')
# Compute learned weighting for synchronisation
# --- Recurrent Loop ---
for stepi in range(self.iterations):
pre_synapse_input = torch.concatenate((x, activated_state), dim=-1)
# --- Apply Synapses ---
state = self.synapses(pre_synapse_input)
# The 'state_trace' is the history of incoming pre-activations
state_trace = torch.cat((state_trace[:, :, 1:], state.unsqueeze(-1)), dim=-1)
# --- Apply Neuron-Level Models ---
activated_state = self.trace_processor(state_trace)
# One would also keep an 'activated_state_trace' as the history of outgoing post-activations
# BUT, this is unnecessary because the synchronisation calculation is fully linear and can be
# done using only the currect activated state (see compute_synchronisation method for explanation)
# --- Calculate Synchronisation for Output Predictions ---
synchronisation_out, decay_alpha_out, decay_beta_out = self.compute_synchronisation(activated_state, decay_alpha_out, decay_beta_out, r_out, synch_type='out')
# --- Get Predictions and Certainties ---
current_prediction = self.output_projector(synchronisation_out)
current_certainty = self.compute_certainty(current_prediction)
predictions[..., stepi] = current_prediction
certainties[..., stepi] = current_certainty
# --- Tracking ---
if track:
pre_activations_tracking.append(state_trace[:,:,-1].detach().cpu().numpy())
post_activations_tracking.append(activated_state.detach().cpu().numpy())
synch_out_tracking.append(synchronisation_out.detach().cpu().numpy())
# --- Return Values ---
if track:
return predictions, certainties, np.array(synch_out_tracking), np.array(pre_activations_tracking), np.array(post_activations_tracking), np.array(attention_tracking)
return predictions, certainties, synchronisation_out