Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| from PIL import Image | |
| from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline | |
| from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref | |
| from src.unet_hacked_tryon import UNet2DConditionModel | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPVisionModelWithProjection, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| ) | |
| from diffusers import DDPMScheduler,AutoencoderKL | |
| from typing import List | |
| import torch | |
| import os | |
| import io | |
| import warnings | |
| import requests | |
| from transformers import AutoTokenizer | |
| import numpy as np | |
| from utils_mask import get_mask_location | |
| from torchvision import transforms | |
| import apply_net | |
| from preprocess.humanparsing.run_parsing import Parsing | |
| from preprocess.openpose.run_openpose import OpenPose | |
| from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation | |
| from torchvision.transforms.functional import to_pil_image | |
| import pillow_heif # HEIC 이미지 처리용 (아이폰 촬영 사진 포맷) | |
| from urllib.parse import urlparse | |
| # SSL 경고 억제 | |
| warnings.filterwarnings("ignore", message=".*OpenSSL.*") | |
| warnings.filterwarnings("ignore", category=UserWarning, module="urllib3") | |
| # requests 세션 설정 | |
| session = requests.Session() | |
| session.verify = False # SSL 검증 비활성화 (개발 환경용) | |
| def pil_to_binary_mask(pil_image, threshold=0): | |
| np_image = np.array(pil_image) | |
| grayscale_image = Image.fromarray(np_image).convert("L") | |
| binary_mask = np.array(grayscale_image) > threshold | |
| mask = np.zeros(binary_mask.shape, dtype=np.uint8) | |
| for i in range(binary_mask.shape[0]): | |
| for j in range(binary_mask.shape[1]): | |
| if binary_mask[i,j] == True : | |
| mask[i,j] = 1 | |
| mask = (mask*255).astype(np.uint8) | |
| output_mask = Image.fromarray(mask) | |
| return output_mask | |
| base_path = 'yisol/IDM-VTON' | |
| example_path = os.path.join(os.path.dirname(__file__), 'example') | |
| unet = UNet2DConditionModel.from_pretrained( | |
| base_path, | |
| subfolder="unet", | |
| torch_dtype=torch.float16, | |
| ) | |
| unet.requires_grad_(False) | |
| tokenizer_one = AutoTokenizer.from_pretrained( | |
| base_path, | |
| subfolder="tokenizer", | |
| revision=None, | |
| use_fast=False, | |
| ) | |
| tokenizer_two = AutoTokenizer.from_pretrained( | |
| base_path, | |
| subfolder="tokenizer_2", | |
| revision=None, | |
| use_fast=False, | |
| ) | |
| noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") | |
| text_encoder_one = CLIPTextModel.from_pretrained( | |
| base_path, | |
| subfolder="text_encoder", | |
| torch_dtype=torch.float16, | |
| ) | |
| text_encoder_two = CLIPTextModelWithProjection.from_pretrained( | |
| base_path, | |
| subfolder="text_encoder_2", | |
| torch_dtype=torch.float16, | |
| ) | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| base_path, | |
| subfolder="image_encoder", | |
| torch_dtype=torch.float16, | |
| ) | |
| vae = AutoencoderKL.from_pretrained(base_path, | |
| subfolder="vae", | |
| torch_dtype=torch.float16, | |
| ) | |
| # "stabilityai/stable-diffusion-xl-base-1.0", | |
| UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( | |
| base_path, | |
| subfolder="unet_encoder", | |
| torch_dtype=torch.float16, | |
| ) | |
| parsing_model = Parsing(0) | |
| openpose_model = OpenPose(0) | |
| UNet_Encoder.requires_grad_(False) | |
| image_encoder.requires_grad_(False) | |
| vae.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| text_encoder_one.requires_grad_(False) | |
| text_encoder_two.requires_grad_(False) | |
| tensor_transfrom = transforms.Compose( | |
| [ | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| pipe = TryonPipeline.from_pretrained( | |
| base_path, | |
| unet=unet, | |
| vae=vae, | |
| feature_extractor= CLIPImageProcessor(), | |
| text_encoder = text_encoder_one, | |
| text_encoder_2 = text_encoder_two, | |
| tokenizer = tokenizer_one, | |
| tokenizer_2 = tokenizer_two, | |
| scheduler = noise_scheduler, | |
| image_encoder=image_encoder, | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe.unet_encoder = UNet_Encoder | |
| # 이미지 전처리 함수 | |
| def preprocess_image(image): | |
| # HEIC 이미지 처리 | |
| if isinstance(image, np.ndarray): | |
| image = Image.fromarray(image) | |
| # HEIC 이미지를 JPEG로 변환 - 이거 안 먹히는 거 같은데.... | |
| try: | |
| output = io.BytesIO() | |
| image.convert("RGB").save(output, format="JPEG", quality=95) | |
| output.seek(0) | |
| image = Image.open(output) | |
| except Exception as e: | |
| print(f"Error converting image: {e}") | |
| # 변환 실패 시 원본 이미지 사용 | |
| image = image.convert("RGB") | |
| # 이미지 크기 가져오기 | |
| width, height = image.size | |
| # 3:4 비율로 중앙 자르기 | |
| target_width = int(min(width, height * (3 / 4))) | |
| target_height = int(min(height, width * (4 / 3))) | |
| left = (width - target_width) / 2 | |
| top = (height - target_height) / 2 | |
| right = (width + target_width) / 2 | |
| bottom = (height + target_height) / 2 | |
| # 이미지 자르기 | |
| cropped_img = image.crop((left, top, right, bottom)) | |
| # 768x1024로 리사이징 | |
| resized_img = cropped_img.resize((768, 1024), resample=Image.Resampling.LANCZOS) | |
| return resized_img | |
| # URL에서 이미지 가져오기 함수 | |
| def load_image_from_url(url): | |
| try: | |
| response = session.get(url, stream=True, timeout=10) | |
| response.raise_for_status() # HTTP 오류 확인 | |
| # 이미지 다운로드 | |
| img = Image.open(response.raw).convert("RGB") | |
| # JPEG로 변환 | |
| output = io.BytesIO() | |
| img.save(output, format="JPEG", quality=95) | |
| output.seek(0) | |
| # 변환된 JPEG 이미지 반환 | |
| jpeg_img = Image.open(output) | |
| return jpeg_img | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error downloading image from URL: {e}") | |
| return None | |
| except Exception as e: | |
| print(f"Error processing image from URL: {e}") | |
| return None | |
| def process_url_image(url): | |
| """Process image from URL and return PIL Image""" | |
| if not url or not url.strip(): | |
| return None | |
| # URL 유효성 검사 | |
| try: | |
| result = urlparse(url) | |
| if not all([result.scheme, result.netloc]): | |
| print("Invalid URL format") | |
| return None | |
| except Exception as e: | |
| print(f"Error parsing URL: {e}") | |
| return None | |
| img = load_image_from_url(url) | |
| if img is None: | |
| print("Failed to load image from URL") | |
| return None | |
| return preprocess_image(img) | |
| def load_example_for_editor(image_path): | |
| """Load example image for ImageEditor component""" | |
| if image_path is None: | |
| return None | |
| # ImageEditor는 특정 형식을 기대하므로 딕셔너리 형태로 반환 | |
| return { | |
| "background": image_path, | |
| "layers": None, | |
| "composite": None | |
| } | |
| def download_model_file(model_path, urls): | |
| """Download model file from multiple URLs if it doesn't exist""" | |
| if os.path.exists(model_path): | |
| print(f"Model file already exists: {model_path}") | |
| return True | |
| os.makedirs(os.path.dirname(model_path), exist_ok=True) | |
| for url in urls: | |
| try: | |
| print(f"Downloading from: {url}") | |
| response = requests.get(url, stream=True) | |
| response.raise_for_status() | |
| total_size = int(response.headers.get('content-length', 0)) | |
| block_size = 8192 | |
| with open(model_path, 'wb') as f: | |
| downloaded = 0 | |
| for chunk in response.iter_content(chunk_size=block_size): | |
| if chunk: | |
| f.write(chunk) | |
| downloaded += len(chunk) | |
| if total_size > 0: | |
| percent = (downloaded / total_size) * 100 | |
| if(percent % 10 == 0): | |
| print(f"\rDownload progress: {percent:.1f}%", end='', flush=True) | |
| print(f"\nSuccessfully downloaded: {model_path}") | |
| return True | |
| except Exception as e: | |
| print(f"Failed to download from {url}: {e}") | |
| continue | |
| print(f"Failed to download model file from all URLs: {model_path}") | |
| return False | |
| def download_densepose_model(): | |
| """Download DensePose model file""" | |
| model_path = "ckpt/densepose/model_final_162be9.pkl" | |
| urls = [ | |
| "https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl", | |
| "https://github.com/facebookresearch/densepose/releases/download/v1.0/model_final_162be9.pkl" | |
| ] | |
| return download_model_file(model_path, urls) | |
| def download_openpose_model(): | |
| """Download OpenPose model file""" | |
| model_path = "ckpt/openpose/ckpts/body_pose_model.pth" | |
| urls = [ | |
| "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth" | |
| ] | |
| return download_model_file(model_path, urls) | |
| def download_humanparsing_models(): | |
| """Download Human Parsing model files""" | |
| base_url = "https://huggingface.co/Longcat2957/humanparsing-onnx/resolve/main" | |
| models = [ | |
| ("ckpt/humanparsing/parsing_atr.onnx", f"{base_url}/parsing_atr.onnx"), | |
| ("ckpt/humanparsing/parsing_lip.onnx", f"{base_url}/parsing_lip.onnx") | |
| ] | |
| success = True | |
| for model_path, url in models: | |
| if os.path.exists(model_path): | |
| print(f"Human parsing model already exists: {model_path}") | |
| continue | |
| print(f"Downloading {model_path} from {url}") | |
| if download_model_file(model_path, [url]): | |
| print(f"Successfully downloaded: {model_path}") | |
| else: | |
| print(f"Failed to download: {model_path}") | |
| success = False | |
| return success | |
| def download_all_models(): | |
| """Download all required model files""" | |
| print("Checking and downloading required model files...") | |
| # Download DensePose model | |
| print("\n=== Downloading DensePose model ===") | |
| densepose_success = download_densepose_model() | |
| # Download OpenPose model | |
| print("\n=== Downloading OpenPose model ===") | |
| openpose_success = download_openpose_model() | |
| # Download Human Parsing models | |
| print("\n=== Downloading Human Parsing models ===") | |
| parsing_success = download_humanparsing_models() | |
| return densepose_success and openpose_success and parsing_success | |
| def start_tryon(dict,garm_img,garment_des,is_checked,denoise_steps,seed, is_checked_crop): | |
| device = "cuda" | |
| openpose_model.preprocessor.body_estimation.model.to(device) | |
| pipe.to(device) | |
| pipe.unet_encoder.to(device) | |
| garm_img= garm_img.convert("RGB").resize((768,1024)) | |
| human_img_orig = dict["background"].convert("RGB") | |
| if is_checked_crop: | |
| width, height = human_img_orig.size | |
| target_width = int(min(width, height * (3 / 4))) | |
| target_height = int(min(height, width * (4 / 3))) | |
| left = (width - target_width) / 2 | |
| top = (height - target_height) / 2 | |
| right = (width + target_width) / 2 | |
| bottom = (height + target_height) / 2 | |
| cropped_img = human_img_orig.crop((left, top, right, bottom)) | |
| crop_size = cropped_img.size | |
| human_img = cropped_img.resize((768,1024)) | |
| else: | |
| human_img = human_img_orig.resize((768,1024)) | |
| if is_checked: | |
| keypoints = openpose_model(human_img.resize((384,512))) | |
| model_parse, _ = parsing_model(human_img.resize((384,512))) | |
| mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints) | |
| mask = mask.resize((768,1024)) | |
| else: | |
| mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024))) | |
| # mask = transforms.ToTensor()(mask) | |
| # mask = mask.unsqueeze(0) | |
| mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img) | |
| mask_gray = to_pil_image((mask_gray+1.0)/2.0) | |
| human_img_arg = _apply_exif_orientation(human_img.resize((384,512))) | |
| human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") | |
| # DensePose 모델 다운로드 및 경로 설정 | |
| densepose_model_path = './ckpt/densepose/model_final_162be9.pkl' | |
| # 모델 파일이 없으면 다운로드 시도 | |
| if not os.path.exists(densepose_model_path): | |
| print("DensePose model not found, attempting to download...") | |
| download_success = download_densepose_model() | |
| if not download_success: | |
| print("Failed to download DensePose model") | |
| return None, None | |
| args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', densepose_model_path, 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')) | |
| # verbosity = getattr(args, "verbosity", None) | |
| pose_img = args.func(args,human_img_arg) | |
| pose_img = pose_img[:,:,::-1] | |
| pose_img = Image.fromarray(pose_img).resize((768,1024)) | |
| with torch.no_grad(): | |
| # Extract the images | |
| with torch.cuda.amp.autocast(): | |
| with torch.no_grad(): | |
| prompt = "model is wearing " + garment_des | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt = "a photo of " + garment_des | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * 1 | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * 1 | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds_c, | |
| _, | |
| _, | |
| _, | |
| ) = pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=1, | |
| do_classifier_free_guidance=False, | |
| negative_prompt=negative_prompt, | |
| ) | |
| pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16) | |
| garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16) | |
| generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | |
| images = pipe( | |
| prompt_embeds=prompt_embeds.to(device,torch.float16), | |
| negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16), | |
| pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16), | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16), | |
| num_inference_steps=denoise_steps, | |
| generator=generator, | |
| strength = 1.0, | |
| pose_img = pose_img.to(device,torch.float16), | |
| text_embeds_cloth=prompt_embeds_c.to(device,torch.float16), | |
| cloth = garm_tensor.to(device,torch.float16), | |
| mask_image=mask, | |
| image=human_img, | |
| height=1024, | |
| width=768, | |
| ip_adapter_image = garm_img.resize((768,1024)), | |
| guidance_scale=2.0, | |
| )[0] | |
| if is_checked_crop: | |
| out_img = images[0].resize(crop_size) | |
| human_img_orig.paste(out_img, (int(left), int(top))) | |
| return human_img_orig, mask_gray | |
| else: | |
| return images[0], mask_gray | |
| # return images[0], mask_gray | |
| garm_list = os.listdir(os.path.join(example_path,"cloth")) | |
| garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list] | |
| human_list = os.listdir(os.path.join(example_path,"human")) | |
| human_list_path = [os.path.join(example_path,"human",human) for human in human_list] | |
| # human_ex_list를 단순한 이미지 경로 리스트로 변경 (그리드 표시를 위해) | |
| human_ex_list = human_list_path | |
| ##default human | |
| image_blocks = gr.Blocks().queue() | |
| with image_blocks as demo: | |
| # CSS를 추가하여 ImageEditor의 canvas 크기를 고정하여 브러시 포인터 위치 정렬 (PC 및 모바일 대응) | |
| gr.HTML(""" | |
| <style> | |
| /* PC 및 모바일 공통: ImageEditor 컨테이너 */ | |
| #image-editor-fixed { | |
| position: relative; | |
| display: inline-block; | |
| } | |
| /* PC: 고정 크기 (384x512) */ | |
| @media (min-width: 768px) { | |
| #image-editor-fixed canvas { | |
| width: 384px !important; | |
| height: 512px !important; | |
| max-width: 384px !important; | |
| max-height: 512px !important; | |
| object-fit: contain !important; | |
| } | |
| #image-editor-fixed > div, | |
| #image-editor-fixed .image-editor-container, | |
| #image-editor-fixed .image-editor-wrapper, | |
| #image-editor-fixed [class*="editor"], | |
| #image-editor-fixed [class*="canvas"] { | |
| width: 384px !important; | |
| height: 512px !important; | |
| max-width: 384px !important; | |
| max-height: 512px !important; | |
| } | |
| #image-editor-fixed img { | |
| width: 384px !important; | |
| height: 512px !important; | |
| max-width: 384px !important; | |
| max-height: 512px !important; | |
| object-fit: contain !important; | |
| } | |
| } | |
| /* 모바일: 화면 크기에 맞게 스케일링하되 비율 유지 */ | |
| @media (max-width: 767px) { | |
| #image-editor-fixed { | |
| width: 100% !important; | |
| max-width: 100% !important; | |
| } | |
| #image-editor-fixed canvas { | |
| width: 100% !important; | |
| max-width: 100% !important; | |
| height: auto !important; | |
| aspect-ratio: 3/4 !important; | |
| object-fit: contain !important; | |
| } | |
| #image-editor-fixed > div, | |
| #image-editor-fixed .image-editor-container, | |
| #image-editor-fixed .image-editor-wrapper { | |
| width: 100% !important; | |
| max-width: 100% !important; | |
| } | |
| #image-editor-fixed img { | |
| width: 100% !important; | |
| max-width: 100% !important; | |
| height: auto !important; | |
| aspect-ratio: 3/4 !important; | |
| object-fit: contain !important; | |
| } | |
| } | |
| /* 출력 이미지 크기 고정: Masked image output 및 Output */ | |
| /* PC: 고정 크기 (384x512) */ | |
| @media (min-width: 768px) { | |
| #masked-img img, | |
| #output-img img { | |
| width: 384px !important; | |
| height: 512px !important; | |
| max-width: 384px !important; | |
| max-height: 512px !important; | |
| object-fit: contain !important; | |
| } | |
| #masked-img, | |
| #output-img { | |
| max-width: 384px !important; | |
| } | |
| } | |
| /* 모바일: 화면 크기에 맞게 스케일링하되 비율 유지 (최대 384px) */ | |
| @media (max-width: 767px) { | |
| #masked-img img, | |
| #output-img img { | |
| width: 100% !important; | |
| max-width: 384px !important; | |
| height: auto !important; | |
| aspect-ratio: 3/4 !important; | |
| object-fit: contain !important; | |
| } | |
| #masked-img, | |
| #output-img { | |
| width: 100% !important; | |
| max-width: 384px !important; | |
| } | |
| } | |
| </style> | |
| <script> | |
| // PC 및 모바일 모두에서 canvas의 실제 크기를 고정하여 브러시 위치 정확도 유지 | |
| (function() { | |
| const CANVAS_WIDTH = 384; | |
| const CANVAS_HEIGHT = 512; | |
| function fixImageEditorCanvas() { | |
| const editor = document.querySelector('#image-editor-fixed'); | |
| if (!editor) return; | |
| const canvas = editor.querySelector('canvas'); | |
| if (!canvas) return; | |
| // canvas의 실제 픽셀 크기는 항상 고정 (브러시 위치 정확도 유지) | |
| if (canvas.width !== CANVAS_WIDTH || canvas.height !== CANVAS_HEIGHT) { | |
| canvas.width = CANVAS_WIDTH; | |
| canvas.height = CANVAS_HEIGHT; | |
| } | |
| // 모바일에서는 CSS로 표시 크기만 조정, PC에서는 고정 크기 | |
| const isMobile = window.innerWidth <= 767; | |
| if (isMobile) { | |
| // 모바일: 화면 크기에 맞게 표시하되 비율 유지 | |
| const container = editor.closest('.gradio-column') || editor.parentElement; | |
| if (container) { | |
| const maxWidth = Math.min(container.offsetWidth - 20, 384); | |
| const maxHeight = (maxWidth * 4) / 3; | |
| canvas.style.width = maxWidth + 'px'; | |
| canvas.style.height = maxHeight + 'px'; | |
| canvas.style.maxWidth = '100%'; | |
| canvas.style.maxHeight = 'none'; | |
| } | |
| } else { | |
| // PC: 고정 크기 | |
| canvas.style.width = CANVAS_WIDTH + 'px'; | |
| canvas.style.height = CANVAS_HEIGHT + 'px'; | |
| canvas.style.maxWidth = CANVAS_WIDTH + 'px'; | |
| canvas.style.maxHeight = CANVAS_HEIGHT + 'px'; | |
| } | |
| } | |
| // 초기 실행 | |
| if (document.readyState === 'loading') { | |
| document.addEventListener('DOMContentLoaded', fixImageEditorCanvas); | |
| } else { | |
| fixImageEditorCanvas(); | |
| } | |
| // 이미지 로드 후 재적용 | |
| window.addEventListener('load', function() { | |
| fixImageEditorCanvas(); | |
| setTimeout(fixImageEditorCanvas, 500); | |
| setTimeout(fixImageEditorCanvas, 1500); | |
| }); | |
| // 리사이즈 시 재적용 (모바일 회전 등) | |
| let resizeTimeout; | |
| window.addEventListener('resize', function() { | |
| clearTimeout(resizeTimeout); | |
| resizeTimeout = setTimeout(fixImageEditorCanvas, 300); | |
| }); | |
| // MutationObserver로 동적 변경 감지 | |
| const observer = new MutationObserver(function(mutations) { | |
| fixImageEditorCanvas(); | |
| }); | |
| // ImageEditor가 로드된 후 observer 시작 | |
| setTimeout(function() { | |
| const editor = document.querySelector('#image-editor-fixed'); | |
| if (editor) { | |
| observer.observe(editor, { | |
| childList: true, | |
| subtree: true, | |
| attributes: true, | |
| attributeFilter: ['style', 'class'] | |
| }); | |
| } | |
| }, 1000); | |
| })(); | |
| </script> | |
| """) | |
| gr.Markdown("## DXCO : GENAI-VTON") | |
| gr.Markdown("임성남, 윤지영, 조민주 based on IDM-VTON") | |
| gr.Markdown("이미지는 3:4비율(384x512 또는 768x1024)로 올려주세요") | |
| with gr.Row(): | |
| with gr.Column(): | |
| imgs = gr.ImageEditor(sources='upload', type="pil", label='대상 이미지', interactive=True, height=512, elem_id="image-editor-fixed") | |
| img_url_input = gr.Textbox(label="대상 이미지 URL", placeholder="예) https://example.com/human_image.jpg") | |
| with gr.Row(): | |
| with gr.Row(): | |
| is_checked = gr.Checkbox(label="Yes", info="자동 마스킹",value=True) | |
| example = gr.Examples( | |
| inputs=imgs, | |
| examples_per_page=8, | |
| examples=human_ex_list, | |
| ) | |
| with gr.Column(): | |
| garm_img = gr.Image(label="의상 이미지", sources='upload', type="pil") | |
| garm_url_input = gr.Textbox(label="의상 이미지 URL", placeholder="예) https://example.com/garment.jpg") | |
| with gr.Row(elem_id="prompt-container"): | |
| with gr.Row(): | |
| prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt") | |
| example = gr.Examples( | |
| inputs=garm_img, | |
| examples_per_page=8, | |
| examples=garm_list_path) | |
| with gr.Row(): | |
| try_button = gr.Button(value="Try-on") | |
| with gr.Row(): | |
| with gr.Column(): | |
| masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False, height=512) | |
| with gr.Column(): | |
| image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False, height=512) | |
| # with gr.Accordion(label="Advanced Settings", open=False): | |
| # with gr.Row(): | |
| # denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1) | |
| # seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42) | |
| # is_checked = gr.Number(value=True) | |
| # 이미지 업로드 시 전처리 | |
| # imgs.upload( | |
| # fn=preprocess_image, | |
| # inputs=imgs, | |
| # outputs=imgs, # 전처리된 이미지를 ImageEditor에 다시 표시 | |
| # ) | |
| # 대상 이미지: URL 입력 처리 | |
| img_url_input.change( | |
| fn=lambda url: process_url_image(url), | |
| inputs=img_url_input, | |
| outputs=imgs, | |
| ) | |
| # 의상 이미지: URL 입력 처리 | |
| garm_url_input.change( | |
| fn=lambda url: process_url_image(url), | |
| inputs=garm_url_input, | |
| outputs=garm_img, | |
| ) | |
| is_checked_crop = True | |
| denoise_steps = 30 | |
| seed = 42 | |
| try_button.click( | |
| fn=lambda *args: start_tryon(*args, is_checked_crop=is_checked_crop, denoise_steps=denoise_steps, seed=seed), | |
| inputs=[imgs, garm_img, prompt, is_checked], | |
| outputs=[image_out, masked_img], | |
| api_name='tryon' | |
| ) | |
| # DensePose 모델 다운로드 | |
| print("Initializing DensePose model...") | |
| try: | |
| download_all_models() | |
| print("All model files downloaded successfully.") | |
| except Exception as e: | |
| print(f"Warning: Could not download all model files: {e}") | |
| print("The models will be downloaded when needed during inference.") | |
| # 앱 실행 | |
| if __name__ == "__main__": | |
| try: | |
| print("Starting GENAI-VTON application...") | |
| image_blocks.launch(server_name="0.0.0.0", server_port=7860, share=False) | |
| except Exception as e: | |
| print(f"Error starting the application: {e}") | |
| print("Please check if all required dependencies are installed.") | |