Upload API_USAGE.md with huggingface_hub
Browse files- API_USAGE.md +262 -0
API_USAGE.md
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Wearable Anomaly Detector 接口文档
|
| 2 |
+
|
| 3 |
+
本指南说明 `hf_release` 目录下各核心模块的调用方式,涵盖输入输出格式、常用方法与示例。
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## 1. 初始化
|
| 8 |
+
|
| 9 |
+
```python
|
| 10 |
+
from wearable_anomaly_detector import WearableAnomalyDetector
|
| 11 |
+
|
| 12 |
+
detector = WearableAnomalyDetector(
|
| 13 |
+
model_dir="checkpoints/phase2/exp_factor_balanced",
|
| 14 |
+
device="cpu", # 可选,默认自动检测
|
| 15 |
+
threshold=None # 可选,未设置时使用配置/默认阈值
|
| 16 |
+
)
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
| 参数 | 说明 |
|
| 20 |
+
| --- | --- |
|
| 21 |
+
| `model_dir` | Phase2 最佳权重所在目录,必须包含 `best_model.pt` |
|
| 22 |
+
| `device` | `"cpu"` / `"cuda"` / `"cuda:0"` 等 |
|
| 23 |
+
| `threshold` | 手动指定异常阈值(浮点数),不指定则使用配置或默认值 0.53 |
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## 2. 数据结构
|
| 28 |
+
|
| 29 |
+
### 2.1 单个数据点 (`dict`)
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
{
|
| 33 |
+
"timestamp": "2025-01-01T08:00:00",
|
| 34 |
+
"deviceId": "demo_user",
|
| 35 |
+
"features": {
|
| 36 |
+
"hr": 72.0,
|
| 37 |
+
"hrv_rmssd": 35.0,
|
| 38 |
+
"time_period_primary": "day",
|
| 39 |
+
"data_quality": "high",
|
| 40 |
+
"...": "..."
|
| 41 |
+
},
|
| 42 |
+
"static_features": {
|
| 43 |
+
"age_group": 2,
|
| 44 |
+
"sex": 0,
|
| 45 |
+
"exercise": 1
|
| 46 |
+
}
|
| 47 |
+
}
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
- 单个窗口需 12 条 5 分钟数据,顺序按时间递增。
|
| 51 |
+
- 缺失字段会自动回退到 `configs/features_config.json` 的默认值或分类映射。
|
| 52 |
+
|
| 53 |
+
### 2.2 `data_points` / `windows`
|
| 54 |
+
|
| 55 |
+
- **实时检测**需要 1 个窗口(`List[Dict]`)。
|
| 56 |
+
- **模式聚合**可传 `List[List[Dict]]`(每个内部列表代表一天)。
|
| 57 |
+
|
| 58 |
+
### 2.3 缺失字段与低质量数据
|
| 59 |
+
|
| 60 |
+
- 若某些特征缺失,直接删除键即可,推理时会回退到默认值。
|
| 61 |
+
- 静态特征缺失可将 `static_features` 设为空字典。
|
| 62 |
+
- 对于传感器丢包,可将 `hr` 等数值设为 `float("nan")`,模型会忽略该值。
|
| 63 |
+
- 仓库内提供 `test_data/example_window.json`,可直接作为 12 条完整窗口输入,用于验证 API 行为。
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
window = build_window()
|
| 67 |
+
for point in window:
|
| 68 |
+
point["features"].pop("hr_resting", None) # 删除可选特征
|
| 69 |
+
point["features"]["data_quality"] = "low" # 标记质量
|
| 70 |
+
window[0]["static_features"] = {} # 缺少静态信息
|
| 71 |
+
window[3]["features"]["hr"] = float("nan") # 某个时间点无心率
|
| 72 |
+
|
| 73 |
+
result = detector.detect_realtime(window, update_baseline=False)
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
```python
|
| 77 |
+
import json, Path
|
| 78 |
+
with open("test_data/example_window.json", "r") as f:
|
| 79 |
+
sample_window = json.load(f)
|
| 80 |
+
result = detector.detect_realtime(sample_window, update_baseline=False)
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
### 2.4 官方测试脚本
|
| 84 |
+
|
| 85 |
+
若只想“读取一个 JSON → 获取模型输出”,可以直接运行:
|
| 86 |
+
|
| 87 |
+
```bash
|
| 88 |
+
python run_official_inference.py \
|
| 89 |
+
--window-file test_data/example_window.json \
|
| 90 |
+
--model-dir checkpoints/phase2/exp_factor_balanced
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
脚本会输出:
|
| 94 |
+
|
| 95 |
+
1. 模型原始 JSON 结果
|
| 96 |
+
2. 由 `AnomalyFormatter` 生成的 Markdown 文本
|
| 97 |
+
|
| 98 |
+
替换 `--window-file` 为自己的窗口数据即可模拟正式 API 调用。
|
| 99 |
+
|
| 100 |
+
---
|
| 101 |
+
|
| 102 |
+
## 3. `WearableAnomalyDetector` 方法
|
| 103 |
+
|
| 104 |
+
### 3.1 `predict(data_points, return_score=True, return_details=False)`
|
| 105 |
+
|
| 106 |
+
用于直接推理(无附加逻辑)。
|
| 107 |
+
|
| 108 |
+
```python
|
| 109 |
+
result = detector.predict(window, return_score=True, return_details=True)
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
**返回示例**
|
| 113 |
+
|
| 114 |
+
```python
|
| 115 |
+
{
|
| 116 |
+
"is_anomaly": False,
|
| 117 |
+
"threshold": 0.53,
|
| 118 |
+
"anomaly_score": 0.47,
|
| 119 |
+
"details": {
|
| 120 |
+
"window_size": 12,
|
| 121 |
+
"model_output": 0.47,
|
| 122 |
+
"prediction_confidence": 0.06
|
| 123 |
+
}
|
| 124 |
+
}
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
### 3.2 `detect_realtime(data_points, update_baseline=True, ...)`
|
| 128 |
+
|
| 129 |
+
在 `predict` 基础上,附加基线更新等逻辑,适合直接接入实时服务。
|
| 130 |
+
|
| 131 |
+
```python
|
| 132 |
+
result = detector.detect_realtime(window, update_baseline=False)
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
| 参数 | 默认值 | 说明 |
|
| 136 |
+
| --- | --- | --- |
|
| 137 |
+
| `data_points` | 必填 | 最新窗口数据 |
|
| 138 |
+
| `update_baseline` | `True` | 是否在推理后更新基线 |
|
| 139 |
+
| `return_score` | `True` | 是否返回异常分数 |
|
| 140 |
+
| `return_details` | `False` | 是否返回详细字段 |
|
| 141 |
+
|
| 142 |
+
### 3.3 `detect_pattern(data_points, days=None, min_duration_days=3, format_for_llm=False)`
|
| 143 |
+
|
| 144 |
+
对多天数据做异常模式聚合,输出模式摘要及可选的 LLM 文本。
|
| 145 |
+
|
| 146 |
+
```python
|
| 147 |
+
pattern_result = detector.detect_pattern(daily_data, days=7, format_for_llm=True)
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
**返回示例**
|
| 151 |
+
|
| 152 |
+
```python
|
| 153 |
+
{
|
| 154 |
+
"anomaly_pattern": {
|
| 155 |
+
"has_pattern": True,
|
| 156 |
+
"duration_days": 3,
|
| 157 |
+
"trend": "stable",
|
| 158 |
+
"anomaly_type": "continuous_anomaly"
|
| 159 |
+
},
|
| 160 |
+
"formatted_for_llm": "...结构化 Markdown 文本..."
|
| 161 |
+
}
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
---
|
| 165 |
+
|
| 166 |
+
## 4. `AnomalyFormatter`
|
| 167 |
+
|
| 168 |
+
将检测结果、基线信息、历史趋势等转换为适合 LLM 的文本。
|
| 169 |
+
|
| 170 |
+
```python
|
| 171 |
+
from utils.formatter import AnomalyFormatter
|
| 172 |
+
|
| 173 |
+
formatter = AnomalyFormatter() # 可传 config_path 指向自定义格式
|
| 174 |
+
text = formatter.format_for_llm(
|
| 175 |
+
anomaly_result=result,
|
| 176 |
+
baseline_info={
|
| 177 |
+
"baseline_mean": 75.0,
|
| 178 |
+
"baseline_std": 5.0,
|
| 179 |
+
"current_value": 68.0,
|
| 180 |
+
"deviation_pct": -9.3
|
| 181 |
+
},
|
| 182 |
+
daily_results=None
|
| 183 |
+
)
|
| 184 |
+
print(text)
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
**常用参数**
|
| 188 |
+
|
| 189 |
+
| 参数 | 类型 | 说明 |
|
| 190 |
+
| --- | --- | --- |
|
| 191 |
+
| `anomaly_result` | `dict` | 来自 `predict/detect_realtime` 的结果 |
|
| 192 |
+
| `baseline_info` | `dict` | 基线均值/标准差、当前值、偏离百分比等 |
|
| 193 |
+
| `related_indicators` | `dict` | 睡眠、活动、压力等指标,可选 |
|
| 194 |
+
| `daily_results` | `List[dict]` | 多天趋势(日期 + HRV/分数),可选 |
|
| 195 |
+
|
| 196 |
+
---
|
| 197 |
+
|
| 198 |
+
## 5. `BaselineStorage`(可选)
|
| 199 |
+
|
| 200 |
+
路径:`utils/baseline_storage.py`
|
| 201 |
+
|
| 202 |
+
```python
|
| 203 |
+
from utils.baseline_storage import BaselineStorage
|
| 204 |
+
|
| 205 |
+
storage = BaselineStorage(
|
| 206 |
+
storage_type="file",
|
| 207 |
+
file_path="data_storage/baselines.json",
|
| 208 |
+
import_from_csv=False
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
storage.save_baseline({
|
| 212 |
+
"device_id": "demo_user",
|
| 213 |
+
"feature_name": "hrv_rmssd",
|
| 214 |
+
"baseline_type": "personal",
|
| 215 |
+
"baseline_mean": 75.0,
|
| 216 |
+
"baseline_std": 5.0,
|
| 217 |
+
"data_count": 30
|
| 218 |
+
})
|
| 219 |
+
|
| 220 |
+
baseline = storage.get_baseline("demo_user", "hrv_rmssd")
|
| 221 |
+
storage.update_baseline_incremental("demo_user", "hrv_rmssd", new_value=70.0, data_count=baseline["data_count"] + 1)
|
| 222 |
+
```
|
| 223 |
+
|
| 224 |
+
---
|
| 225 |
+
|
| 226 |
+
## 6. 快速脚本
|
| 227 |
+
|
| 228 |
+
| 场景 | 文件 | 说明 |
|
| 229 |
+
| --- | --- | --- |
|
| 230 |
+
| 官方推理(与线上一致) | `run_official_inference.py` | `python run_official_inference.py --window-file test_data/example_window.json` |
|
| 231 |
+
| 多场景演示(随机噪声/缺失/连续异常) | `test_quickstart.py` | `python test_quickstart.py`(演示中会暂时调低阈值) |
|
| 232 |
+
| PatchTrAD → build_case 双模式演示 | `simulate_patchad_case_pipeline.py` | `python simulate_patchad_case_pipeline.py --mode all`(输出预筛结果、case、校验信息) |
|
| 233 |
+
| 交互体验(选择样例并查看输出) | `gradio_app.py` | `python gradio_app.py` 或部署到 Hugging Face Space |
|
| 234 |
+
|
| 235 |
+
### 6.1 PatchTrAD + build_case 演示
|
| 236 |
+
|
| 237 |
+
```bash
|
| 238 |
+
python simulate_patchad_case_pipeline.py --mode all
|
| 239 |
+
```
|
| 240 |
+
|
| 241 |
+
输出包含:
|
| 242 |
+
- 模式A:平台自带 PatchTrAD,直接 `POST /api/build_case`
|
| 243 |
+
- 模式B:官方 `precheck` → `build_case` 两次交互
|
| 244 |
+
- 校验失败示例(缺少 history_windows)
|
| 245 |
+
|
| 246 |
+
可通过 `--mode platform` 或 `--mode official` 单独运行某个流程,也可替换 `--data-file` 为自有 JSONL。
|
| 247 |
+
|
| 248 |
+
---
|
| 249 |
+
|
| 250 |
+
## 7. 常见问题
|
| 251 |
+
|
| 252 |
+
| 问题 | 处理方式 |
|
| 253 |
+
| --- | --- |
|
| 254 |
+
| 没有配置文件 | `_load_config` 会自动回退默认值,无需额外设置 |
|
| 255 |
+
| 没有静态特征 | `FeatureCalculator` 将使用配置中的默认值 |
|
| 256 |
+
| 想换窗口尺寸 | 修改 `configs/detector_config.json` 中的 `detection.window_size` |
|
| 257 |
+
| 想换特征列表 | 修改 `configs/features_config.json`,无需改代码 |
|
| 258 |
+
|
| 259 |
+
---
|
| 260 |
+
|
| 261 |
+
如需更多示例或扩展,欢迎查看 `README.md` 的“真实数据测试”章节或提交 Issue。祝使用顺利!
|
| 262 |
+
|