Spaces:
Running
on
Zero
Running
on
Zero
Update constants.py
#13
by
Spestly
- opened
- .gitignore +0 -207
- README.md +1 -1
- app.py +91 -226
- constants.py +33 -54
- image_processor.py +2 -2
- packages.txt +1 -1
- pre-requirements.txt +0 -1
- requirements.txt +3 -11
- utils.py +485 -714
.gitignore
DELETED
|
@@ -1,207 +0,0 @@
|
|
| 1 |
-
# Byte-compiled / optimized / DLL files
|
| 2 |
-
__pycache__/
|
| 3 |
-
*.py[codz]
|
| 4 |
-
*$py.class
|
| 5 |
-
|
| 6 |
-
# C extensions
|
| 7 |
-
*.so
|
| 8 |
-
|
| 9 |
-
# Distribution / packaging
|
| 10 |
-
.Python
|
| 11 |
-
build/
|
| 12 |
-
develop-eggs/
|
| 13 |
-
dist/
|
| 14 |
-
downloads/
|
| 15 |
-
eggs/
|
| 16 |
-
.eggs/
|
| 17 |
-
lib/
|
| 18 |
-
lib64/
|
| 19 |
-
parts/
|
| 20 |
-
sdist/
|
| 21 |
-
var/
|
| 22 |
-
wheels/
|
| 23 |
-
share/python-wheels/
|
| 24 |
-
*.egg-info/
|
| 25 |
-
.installed.cfg
|
| 26 |
-
*.egg
|
| 27 |
-
MANIFEST
|
| 28 |
-
|
| 29 |
-
# PyInstaller
|
| 30 |
-
# Usually these files are written by a python script from a template
|
| 31 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
-
*.manifest
|
| 33 |
-
*.spec
|
| 34 |
-
|
| 35 |
-
# Installer logs
|
| 36 |
-
pip-log.txt
|
| 37 |
-
pip-delete-this-directory.txt
|
| 38 |
-
|
| 39 |
-
# Unit test / coverage reports
|
| 40 |
-
htmlcov/
|
| 41 |
-
.tox/
|
| 42 |
-
.nox/
|
| 43 |
-
.coverage
|
| 44 |
-
.coverage.*
|
| 45 |
-
.cache
|
| 46 |
-
nosetests.xml
|
| 47 |
-
coverage.xml
|
| 48 |
-
*.cover
|
| 49 |
-
*.py.cover
|
| 50 |
-
.hypothesis/
|
| 51 |
-
.pytest_cache/
|
| 52 |
-
cover/
|
| 53 |
-
|
| 54 |
-
# Translations
|
| 55 |
-
*.mo
|
| 56 |
-
*.pot
|
| 57 |
-
|
| 58 |
-
# Django stuff:
|
| 59 |
-
*.log
|
| 60 |
-
local_settings.py
|
| 61 |
-
db.sqlite3
|
| 62 |
-
db.sqlite3-journal
|
| 63 |
-
|
| 64 |
-
# Flask stuff:
|
| 65 |
-
instance/
|
| 66 |
-
.webassets-cache
|
| 67 |
-
|
| 68 |
-
# Scrapy stuff:
|
| 69 |
-
.scrapy
|
| 70 |
-
|
| 71 |
-
# Sphinx documentation
|
| 72 |
-
docs/_build/
|
| 73 |
-
|
| 74 |
-
# PyBuilder
|
| 75 |
-
.pybuilder/
|
| 76 |
-
target/
|
| 77 |
-
|
| 78 |
-
# Jupyter Notebook
|
| 79 |
-
.ipynb_checkpoints
|
| 80 |
-
|
| 81 |
-
# IPython
|
| 82 |
-
profile_default/
|
| 83 |
-
ipython_config.py
|
| 84 |
-
|
| 85 |
-
# pyenv
|
| 86 |
-
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
-
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
-
# .python-version
|
| 89 |
-
|
| 90 |
-
# pipenv
|
| 91 |
-
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
-
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
-
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
-
# install all needed dependencies.
|
| 95 |
-
#Pipfile.lock
|
| 96 |
-
|
| 97 |
-
# UV
|
| 98 |
-
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
| 99 |
-
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
-
# commonly ignored for libraries.
|
| 101 |
-
#uv.lock
|
| 102 |
-
|
| 103 |
-
# poetry
|
| 104 |
-
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 105 |
-
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 106 |
-
# commonly ignored for libraries.
|
| 107 |
-
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 108 |
-
#poetry.lock
|
| 109 |
-
#poetry.toml
|
| 110 |
-
|
| 111 |
-
# pdm
|
| 112 |
-
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 113 |
-
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
| 114 |
-
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
| 115 |
-
#pdm.lock
|
| 116 |
-
#pdm.toml
|
| 117 |
-
.pdm-python
|
| 118 |
-
.pdm-build/
|
| 119 |
-
|
| 120 |
-
# pixi
|
| 121 |
-
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
| 122 |
-
#pixi.lock
|
| 123 |
-
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
| 124 |
-
# in the .venv directory. It is recommended not to include this directory in version control.
|
| 125 |
-
.pixi
|
| 126 |
-
|
| 127 |
-
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 128 |
-
__pypackages__/
|
| 129 |
-
|
| 130 |
-
# Celery stuff
|
| 131 |
-
celerybeat-schedule
|
| 132 |
-
celerybeat.pid
|
| 133 |
-
|
| 134 |
-
# SageMath parsed files
|
| 135 |
-
*.sage.py
|
| 136 |
-
|
| 137 |
-
# Environments
|
| 138 |
-
.env
|
| 139 |
-
.envrc
|
| 140 |
-
.venv
|
| 141 |
-
env/
|
| 142 |
-
venv/
|
| 143 |
-
ENV/
|
| 144 |
-
env.bak/
|
| 145 |
-
venv.bak/
|
| 146 |
-
|
| 147 |
-
# Spyder project settings
|
| 148 |
-
.spyderproject
|
| 149 |
-
.spyproject
|
| 150 |
-
|
| 151 |
-
# Rope project settings
|
| 152 |
-
.ropeproject
|
| 153 |
-
|
| 154 |
-
# mkdocs documentation
|
| 155 |
-
/site
|
| 156 |
-
|
| 157 |
-
# mypy
|
| 158 |
-
.mypy_cache/
|
| 159 |
-
.dmypy.json
|
| 160 |
-
dmypy.json
|
| 161 |
-
|
| 162 |
-
# Pyre type checker
|
| 163 |
-
.pyre/
|
| 164 |
-
|
| 165 |
-
# pytype static type analyzer
|
| 166 |
-
.pytype/
|
| 167 |
-
|
| 168 |
-
# Cython debug symbols
|
| 169 |
-
cython_debug/
|
| 170 |
-
|
| 171 |
-
# PyCharm
|
| 172 |
-
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 173 |
-
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 174 |
-
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 175 |
-
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 176 |
-
#.idea/
|
| 177 |
-
|
| 178 |
-
# Abstra
|
| 179 |
-
# Abstra is an AI-powered process automation framework.
|
| 180 |
-
# Ignore directories containing user credentials, local state, and settings.
|
| 181 |
-
# Learn more at https://abstra.io/docs
|
| 182 |
-
.abstra/
|
| 183 |
-
|
| 184 |
-
# Visual Studio Code
|
| 185 |
-
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
| 186 |
-
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
| 187 |
-
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
| 188 |
-
# you could uncomment the following to ignore the entire vscode folder
|
| 189 |
-
# .vscode/
|
| 190 |
-
|
| 191 |
-
# Ruff stuff:
|
| 192 |
-
.ruff_cache/
|
| 193 |
-
|
| 194 |
-
# PyPI configuration file
|
| 195 |
-
.pypirc
|
| 196 |
-
|
| 197 |
-
# Cursor
|
| 198 |
-
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
| 199 |
-
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
| 200 |
-
# refer to https://docs.cursor.com/context/ignore-files
|
| 201 |
-
.cursorignore
|
| 202 |
-
.cursorindexingignore
|
| 203 |
-
|
| 204 |
-
# Marimo
|
| 205 |
-
marimo/_static/
|
| 206 |
-
marimo/_lsp/
|
| 207 |
-
__marimo__/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🧩🖼️
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: mit
|
|
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.31.3
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: mit
|
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
-
from argparse import ArgumentParser
|
| 4 |
from stablepy import (
|
| 5 |
Model_Diffusers,
|
| 6 |
SCHEDULE_TYPE_OPTIONS,
|
|
@@ -41,8 +40,6 @@ from constants import (
|
|
| 41 |
DIFFUSERS_CONTROLNET_MODEL,
|
| 42 |
IP_MODELS,
|
| 43 |
MODE_IP_OPTIONS,
|
| 44 |
-
CACHE_HF_ROOT,
|
| 45 |
-
CACHE_HF,
|
| 46 |
)
|
| 47 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
| 48 |
import torch
|
|
@@ -63,7 +60,6 @@ from utils import (
|
|
| 63 |
progress_step_bar,
|
| 64 |
html_template_message,
|
| 65 |
escape_html,
|
| 66 |
-
clear_hf_cache,
|
| 67 |
)
|
| 68 |
from image_processor import preprocessor_tab
|
| 69 |
from datetime import datetime
|
|
@@ -76,18 +72,11 @@ from diffusers import FluxPipeline
|
|
| 76 |
# import urllib.parse
|
| 77 |
import subprocess
|
| 78 |
|
| 79 |
-
|
| 80 |
-
HIDE_API = bool(os.getenv("HIDE_API"))
|
| 81 |
-
if IS_ZERO_GPU:
|
| 82 |
-
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
| 83 |
-
IS_GPU_MODE = True if IS_ZERO_GPU else (True if torch.cuda.is_available() else False)
|
| 84 |
-
img_path = "./images/"
|
| 85 |
-
allowed_path = os.path.abspath(img_path)
|
| 86 |
-
delete_cache_time = (9600, 9600) if IS_ZERO_GPU else (86400, 86400)
|
| 87 |
-
|
| 88 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 89 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 90 |
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
|
|
|
| 91 |
|
| 92 |
directories = [DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, DIRECTORY_UPSCALERS]
|
| 93 |
for directory in directories:
|
|
@@ -95,15 +84,19 @@ for directory in directories:
|
|
| 95 |
|
| 96 |
# Download stuffs
|
| 97 |
for url in [url.strip() for url in DOWNLOAD_MODEL.split(',')]:
|
| 98 |
-
|
|
|
|
| 99 |
for url in [url.strip() for url in DOWNLOAD_VAE.split(',')]:
|
| 100 |
-
|
|
|
|
| 101 |
for url in [url.strip() for url in DOWNLOAD_LORA.split(',')]:
|
| 102 |
-
|
|
|
|
| 103 |
|
| 104 |
# Download Embeddings
|
| 105 |
for url_embed in DOWNLOAD_EMBEDS:
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
# Build list models
|
| 109 |
embed_list = get_model_list(DIRECTORY_EMBEDS)
|
|
@@ -121,16 +114,15 @@ vae_model_list.insert(0, "None")
|
|
| 121 |
|
| 122 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
flux_repo
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
delete_model(flux_repo)
|
| 134 |
|
| 135 |
#######################
|
| 136 |
# GUI
|
|
@@ -140,17 +132,7 @@ diffusers.utils.logging.set_verbosity(40)
|
|
| 140 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
|
| 141 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
| 142 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
| 143 |
-
|
| 144 |
-
parser = ArgumentParser(description='DiffuseCraft: Create images from text prompts.', add_help=True)
|
| 145 |
-
parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
|
| 146 |
-
parser.add_argument('--theme', type=str, default="NoCrypt/miku", help='Set the theme (default: NoCrypt/miku)')
|
| 147 |
-
parser.add_argument("--ssr", action="store_true", help="Enable SSR (Server-Side Rendering)")
|
| 148 |
-
parser.add_argument("--log-level", type=str, default="INFO", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], help="Set logging level (default: INFO)")
|
| 149 |
-
args = parser.parse_args()
|
| 150 |
-
|
| 151 |
-
logger.setLevel(
|
| 152 |
-
"INFO" if IS_ZERO_GPU else getattr(logging, args.log_level.upper())
|
| 153 |
-
)
|
| 154 |
|
| 155 |
CSS = """
|
| 156 |
.contain { display: flex; flex-direction: column; }
|
|
@@ -160,12 +142,6 @@ CSS = """
|
|
| 160 |
"""
|
| 161 |
|
| 162 |
|
| 163 |
-
def lora_chk(lora_):
|
| 164 |
-
if isinstance(lora_, str) and lora_.strip() not in ["", "None"]:
|
| 165 |
-
return lora_
|
| 166 |
-
return None
|
| 167 |
-
|
| 168 |
-
|
| 169 |
class GuiSD:
|
| 170 |
def __init__(self, stream=True):
|
| 171 |
self.model = None
|
|
@@ -174,22 +150,13 @@ class GuiSD:
|
|
| 174 |
self.last_load = datetime.now()
|
| 175 |
self.inventory = []
|
| 176 |
|
| 177 |
-
def update_storage_models(self, storage_floor_gb=
|
| 178 |
while get_used_storage_gb() > storage_floor_gb:
|
| 179 |
if len(self.inventory) < required_inventory_for_purge:
|
| 180 |
break
|
| 181 |
removal_candidate = self.inventory.pop(0)
|
| 182 |
delete_model(removal_candidate)
|
| 183 |
|
| 184 |
-
# Cleanup after 60 seconds of inactivity
|
| 185 |
-
lowPrioCleanup = max((datetime.now() - self.last_load).total_seconds(), 0) > 60
|
| 186 |
-
if lowPrioCleanup and (len(self.inventory) >= required_inventory_for_purge - 1) and not self.status_loading and get_used_storage_gb(CACHE_HF_ROOT) > (storage_floor_gb * 2):
|
| 187 |
-
print("Cleaning up Hugging Face cache...")
|
| 188 |
-
clear_hf_cache()
|
| 189 |
-
self.inventory = [
|
| 190 |
-
m for m in self.inventory if os.path.exists(m)
|
| 191 |
-
]
|
| 192 |
-
|
| 193 |
def update_inventory(self, model_name):
|
| 194 |
if model_name not in single_file_model_list:
|
| 195 |
self.inventory = [
|
|
@@ -200,21 +167,14 @@ class GuiSD:
|
|
| 200 |
def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)):
|
| 201 |
|
| 202 |
# download link model > model_name
|
| 203 |
-
if model_name.startswith("http"):
|
| 204 |
-
yield f"Downloading model: {model_name}"
|
| 205 |
-
model_name = download_things(DIRECTORY_MODELS, model_name, HF_TOKEN, CIVITAI_API_KEY)
|
| 206 |
-
if not model_name:
|
| 207 |
-
raise ValueError("Error retrieving model information from URL")
|
| 208 |
|
| 209 |
-
|
| 210 |
-
self.update_storage_models()
|
| 211 |
|
| 212 |
vae_model = vae_model if vae_model != "None" else None
|
| 213 |
model_type = get_model_type(model_name)
|
| 214 |
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
| 215 |
|
| 216 |
if not os.path.exists(model_name):
|
| 217 |
-
logger.debug(f"model_name={model_name}, vae_model={vae_model}, task={task}, controlnet_model={controlnet_model}")
|
| 218 |
_ = download_diffuser_repo(
|
| 219 |
repo_name=model_name,
|
| 220 |
model_type=model_type,
|
|
@@ -259,10 +219,10 @@ class GuiSD:
|
|
| 259 |
type_model_precision=dtype_model,
|
| 260 |
retain_task_model_in_cache=False,
|
| 261 |
controlnet_model=controlnet_model,
|
| 262 |
-
device="cpu"
|
| 263 |
env_components=components,
|
| 264 |
)
|
| 265 |
-
self.model.advanced_params(image_preprocessor_cuda_active=
|
| 266 |
else:
|
| 267 |
if self.model.base_model_id != model_name:
|
| 268 |
load_now_time = datetime.now()
|
|
@@ -272,8 +232,7 @@ class GuiSD:
|
|
| 272 |
print("Waiting for the previous model's time ops...")
|
| 273 |
time.sleep(9 - elapsed_time)
|
| 274 |
|
| 275 |
-
|
| 276 |
-
self.model.device = torch.device("cpu")
|
| 277 |
self.model.load_pipe(
|
| 278 |
model_name,
|
| 279 |
task_name=TASK_STABLEPY[task],
|
|
@@ -427,7 +386,7 @@ class GuiSD:
|
|
| 427 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 428 |
msg_lora = ""
|
| 429 |
|
| 430 |
-
|
| 431 |
|
| 432 |
task = TASK_STABLEPY[task]
|
| 433 |
|
|
@@ -525,19 +484,19 @@ class GuiSD:
|
|
| 525 |
"distance_threshold": distance_threshold,
|
| 526 |
"recolor_gamma_correction": float(recolor_gamma_correction),
|
| 527 |
"tile_blur_sigma": int(tile_blur_sigma),
|
| 528 |
-
"lora_A":
|
| 529 |
"lora_scale_A": lora_scale1,
|
| 530 |
-
"lora_B":
|
| 531 |
"lora_scale_B": lora_scale2,
|
| 532 |
-
"lora_C":
|
| 533 |
"lora_scale_C": lora_scale3,
|
| 534 |
-
"lora_D":
|
| 535 |
"lora_scale_D": lora_scale4,
|
| 536 |
-
"lora_E":
|
| 537 |
"lora_scale_E": lora_scale5,
|
| 538 |
-
"lora_F":
|
| 539 |
"lora_scale_F": lora_scale6,
|
| 540 |
-
"lora_G":
|
| 541 |
"lora_scale_G": lora_scale7,
|
| 542 |
"textual_inversion": embed_list if textual_inversion else [],
|
| 543 |
"syntax_weights": syntax_weights, # "Classic"
|
|
@@ -595,11 +554,11 @@ class GuiSD:
|
|
| 595 |
# kwargs for diffusers pipeline
|
| 596 |
if guidance_rescale:
|
| 597 |
pipe_params["guidance_rescale"] = guidance_rescale
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
|
| 604 |
actual_progress = 0
|
| 605 |
info_images = gr.update()
|
|
@@ -629,7 +588,7 @@ class GuiSD:
|
|
| 629 |
|
| 630 |
download_links = "<br>".join(
|
| 631 |
[
|
| 632 |
-
f'<a href="{path.replace("/images/",
|
| 633 |
for i, path in enumerate(image_path)
|
| 634 |
]
|
| 635 |
)
|
|
@@ -738,8 +697,7 @@ def sd_gen_generate_pipeline(*args):
|
|
| 738 |
|
| 739 |
@spaces.GPU(duration=15)
|
| 740 |
def process_upscale(image, upscaler_name, upscaler_size):
|
| 741 |
-
if image is None:
|
| 742 |
-
return None
|
| 743 |
|
| 744 |
from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata
|
| 745 |
from stablepy import load_upscaler_model
|
|
@@ -756,7 +714,7 @@ def process_upscale(image, upscaler_name, upscaler_size):
|
|
| 756 |
|
| 757 |
name_upscaler = f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}"
|
| 758 |
|
| 759 |
-
scaler_beta = load_upscaler_model(model=name_upscaler, tile=
|
| 760 |
image_up = scaler_beta.upscale(image, upscaler_size, True)
|
| 761 |
|
| 762 |
image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image)
|
|
@@ -765,11 +723,11 @@ def process_upscale(image, upscaler_name, upscaler_size):
|
|
| 765 |
|
| 766 |
|
| 767 |
# https://huggingface.co/spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407
|
| 768 |
-
|
| 769 |
-
|
| 770 |
sd_gen = GuiSD()
|
| 771 |
|
| 772 |
-
with gr.Blocks(theme=
|
| 773 |
gr.Markdown("# 🧩 DiffuseCraft")
|
| 774 |
gr.Markdown(SUBTITLE_GUI)
|
| 775 |
with gr.Tab("Generation"):
|
|
@@ -818,7 +776,7 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 818 |
|
| 819 |
actual_task_info = gr.HTML()
|
| 820 |
|
| 821 |
-
with gr.Row(equal_height=False, variant="default"
|
| 822 |
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
|
| 823 |
with gr.Column():
|
| 824 |
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
|
|
@@ -854,22 +812,7 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 854 |
"Schedule type": gr.update(value="Automatic"),
|
| 855 |
"PAG": gr.update(value=.0),
|
| 856 |
"FreeU": gr.update(value=False),
|
| 857 |
-
"Hires upscaler": gr.update(),
|
| 858 |
-
"Hires upscale": gr.update(),
|
| 859 |
-
"Hires steps": gr.update(),
|
| 860 |
-
"Hires denoising strength": gr.update(),
|
| 861 |
-
"Hires CFG": gr.update(),
|
| 862 |
-
"Hires sampler": gr.update(),
|
| 863 |
-
"Hires schedule type": gr.update(),
|
| 864 |
-
"Image resolution": gr.update(value=1024),
|
| 865 |
-
"Strength": gr.update(),
|
| 866 |
}
|
| 867 |
-
|
| 868 |
-
# Generate up to 7 LoRAs
|
| 869 |
-
for i in range(1, 8):
|
| 870 |
-
valid_receptors[f"Lora_{i}"] = gr.update()
|
| 871 |
-
valid_receptors[f"Lora_scale_{i}"] = gr.update()
|
| 872 |
-
|
| 873 |
valid_keys = list(valid_receptors.keys())
|
| 874 |
|
| 875 |
parameters = extract_parameters(base_prompt)
|
|
@@ -883,36 +826,6 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 883 |
parameters["Sampler"] = value_sampler
|
| 884 |
parameters["Schedule type"] = s_type
|
| 885 |
|
| 886 |
-
params_lora = []
|
| 887 |
-
if ">" in parameters["prompt"] and "<" in parameters["prompt"]:
|
| 888 |
-
params_lora = re.findall(r'<lora:[^>]+>', parameters["prompt"])
|
| 889 |
-
if "Loras" in parameters:
|
| 890 |
-
params_lora += re.findall(r'<lora:[^>]+>', parameters["Loras"])
|
| 891 |
-
|
| 892 |
-
if params_lora:
|
| 893 |
-
parsed_params = []
|
| 894 |
-
for tag_l in params_lora:
|
| 895 |
-
try:
|
| 896 |
-
inner = tag_l.strip("<>") # remove < >
|
| 897 |
-
_, data_l = inner.split(":", 1) # remove the "lora:" part
|
| 898 |
-
parts_l = data_l.split(":")
|
| 899 |
-
|
| 900 |
-
name_l = parts_l[0]
|
| 901 |
-
weight_l = float(parts_l[1]) if len(parts_l) > 1 else 1.0 # default weight = 1.0
|
| 902 |
-
|
| 903 |
-
parsed_params.append((name_l, weight_l))
|
| 904 |
-
except Exception as e:
|
| 905 |
-
print(f"Error parsing LoRA tag {tag_l}: {e}")
|
| 906 |
-
|
| 907 |
-
num_lora = 1
|
| 908 |
-
for parsed_l, parsed_s in parsed_params:
|
| 909 |
-
filtered_loras = [m for m in lora_model_list if parsed_l in m]
|
| 910 |
-
if filtered_loras:
|
| 911 |
-
parameters[f"Lora_{num_lora}"] = filtered_loras[0]
|
| 912 |
-
parameters[f"Lora_scale_{num_lora}"] = parsed_s
|
| 913 |
-
num_lora += 1
|
| 914 |
-
|
| 915 |
-
# continue = discard new value
|
| 916 |
for key, val in parameters.items():
|
| 917 |
# print(val)
|
| 918 |
if key in valid_keys:
|
|
@@ -920,12 +833,9 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 920 |
if key == "Sampler":
|
| 921 |
if val not in scheduler_names:
|
| 922 |
continue
|
| 923 |
-
if key
|
| 924 |
if val not in SCHEDULE_TYPE_OPTIONS:
|
| 925 |
-
|
| 926 |
-
if key == "Hires sampler":
|
| 927 |
-
if val not in POST_PROCESSING_SAMPLER:
|
| 928 |
-
continue
|
| 929 |
elif key == "Clip skip":
|
| 930 |
if "," in str(val):
|
| 931 |
val = val.replace(",", "")
|
|
@@ -933,15 +843,15 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 933 |
val = True
|
| 934 |
if key == "prompt":
|
| 935 |
if ">" in val and "<" in val:
|
| 936 |
-
val = re.sub(r'<[^>]+>', '', val)
|
| 937 |
print("Removed LoRA written in the prompt")
|
| 938 |
if key in ["prompt", "neg_prompt"]:
|
| 939 |
val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip()
|
| 940 |
-
if key in ["Steps", "width", "height", "Seed"
|
| 941 |
val = int(val)
|
| 942 |
if key == "FreeU":
|
| 943 |
val = True
|
| 944 |
-
if key in ["CFG scale", "PAG"
|
| 945 |
val = float(val)
|
| 946 |
if key == "Model":
|
| 947 |
filtered_models = [m for m in model_list if val in m]
|
|
@@ -949,12 +859,8 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 949 |
val = filtered_models[0]
|
| 950 |
else:
|
| 951 |
val = name_model
|
| 952 |
-
if key == "Hires upscaler":
|
| 953 |
-
if val not in UPSCALER_KEYS:
|
| 954 |
-
continue
|
| 955 |
if key == "Seed":
|
| 956 |
continue
|
| 957 |
-
|
| 958 |
valid_receptors[key] = gr.update(value=val)
|
| 959 |
# print(val, type(val))
|
| 960 |
# print(valid_receptors)
|
|
@@ -962,6 +868,24 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 962 |
print(str(e))
|
| 963 |
return [value for value in valid_receptors.values()]
|
| 964 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 965 |
def run_clear_prompt_gui():
|
| 966 |
return gr.update(value=""), gr.update(value="")
|
| 967 |
clear_prompt_gui.click(
|
|
@@ -974,15 +898,15 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 974 |
run_set_random_seed, [], seed_gui
|
| 975 |
)
|
| 976 |
|
| 977 |
-
num_images_gui = gr.Slider(minimum=1, maximum=
|
| 978 |
-
prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[
|
| 979 |
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0])
|
| 980 |
|
| 981 |
with gr.Accordion("Hires fix", open=False, visible=True):
|
| 982 |
|
| 983 |
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
|
| 984 |
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by")
|
| 985 |
-
upscaler_tile_size_gui = gr.Slider(minimum=0, maximum=512, step=16, value=
|
| 986 |
upscaler_tile_overlap_gui = gr.Slider(minimum=0, maximum=48, step=1, value=8, label="Upscaler Tile Overlap")
|
| 987 |
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
|
| 988 |
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
|
|
@@ -999,8 +923,7 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 999 |
return gr.Dropdown(label=label, choices=lora_model_list, value="None", allow_custom_value=True, visible=visible)
|
| 1000 |
|
| 1001 |
def lora_scale_slider(label, visible=True):
|
| 1002 |
-
|
| 1003 |
-
return gr.Slider(minimum=-val_lora, maximum=val_lora, step=0.01, value=0.33, label=label, visible=visible)
|
| 1004 |
|
| 1005 |
lora1_gui = lora_dropdown("Lora1")
|
| 1006 |
lora_scale_1_gui = lora_scale_slider("Lora Scale 1")
|
|
@@ -1012,10 +935,10 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 1012 |
lora_scale_4_gui = lora_scale_slider("Lora Scale 4")
|
| 1013 |
lora5_gui = lora_dropdown("Lora5")
|
| 1014 |
lora_scale_5_gui = lora_scale_slider("Lora Scale 5")
|
| 1015 |
-
lora6_gui = lora_dropdown("Lora6", visible=
|
| 1016 |
-
lora_scale_6_gui = lora_scale_slider("Lora Scale 6", visible=
|
| 1017 |
-
lora7_gui = lora_dropdown("Lora7", visible=
|
| 1018 |
-
lora_scale_7_gui = lora_scale_slider("Lora Scale 7", visible=
|
| 1019 |
|
| 1020 |
with gr.Accordion("From URL", open=False, visible=True):
|
| 1021 |
text_lora = gr.Textbox(
|
|
@@ -1024,7 +947,7 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 1024 |
lines=1,
|
| 1025 |
info="It has to be .safetensors files, and you can also download them from Hugging Face.",
|
| 1026 |
)
|
| 1027 |
-
romanize_text = gr.Checkbox(value=False, label="Transliterate name", visible=
|
| 1028 |
button_lora = gr.Button("Get and Refresh the LoRA Lists")
|
| 1029 |
new_lora_status = gr.HTML()
|
| 1030 |
button_lora.click(
|
|
@@ -1089,8 +1012,8 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 1089 |
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
|
| 1090 |
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
|
| 1091 |
high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
|
| 1092 |
-
value_threshold_gui = gr.Slider(minimum=
|
| 1093 |
-
distance_threshold_gui = gr.Slider(minimum=
|
| 1094 |
recolor_gamma_correction_gui = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
|
| 1095 |
tile_blur_sigma_gui = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma")
|
| 1096 |
|
|
@@ -1125,7 +1048,7 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 1125 |
gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded")
|
| 1126 |
return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES)
|
| 1127 |
|
| 1128 |
-
style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui])
|
| 1129 |
|
| 1130 |
with gr.Accordion("Textual inversion", open=False, visible=False):
|
| 1131 |
active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt")
|
|
@@ -1175,62 +1098,20 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 1175 |
hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer")
|
| 1176 |
hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer")
|
| 1177 |
generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU")
|
| 1178 |
-
with gr.Column(visible=(not IS_ZERO_GPU)):
|
| 1179 |
-
image_storage_location_gui = gr.Textbox(value=img_path, label="Image Storage Location")
|
| 1180 |
-
disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar")
|
| 1181 |
-
leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar")
|
| 1182 |
|
| 1183 |
with gr.Accordion("More settings", open=False, visible=False):
|
| 1184 |
loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation")
|
| 1185 |
retain_task_cache_gui = gr.Checkbox(value=False, label="Retain task model in cache")
|
|
|
|
|
|
|
| 1186 |
display_images_gui = gr.Checkbox(value=False, label="Display Images")
|
| 1187 |
image_previews_gui = gr.Checkbox(value=True, label="Image Previews")
|
|
|
|
| 1188 |
retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load")
|
| 1189 |
retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load")
|
| 1190 |
retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load")
|
| 1191 |
xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention")
|
| 1192 |
|
| 1193 |
-
set_params_gui.click(
|
| 1194 |
-
run_set_params_gui, [prompt_gui, model_name_gui], [
|
| 1195 |
-
prompt_gui,
|
| 1196 |
-
neg_prompt_gui,
|
| 1197 |
-
steps_gui,
|
| 1198 |
-
img_width_gui,
|
| 1199 |
-
img_height_gui,
|
| 1200 |
-
seed_gui,
|
| 1201 |
-
sampler_gui,
|
| 1202 |
-
cfg_gui,
|
| 1203 |
-
clip_skip_gui,
|
| 1204 |
-
model_name_gui,
|
| 1205 |
-
schedule_type_gui,
|
| 1206 |
-
pag_scale_gui,
|
| 1207 |
-
free_u_gui,
|
| 1208 |
-
upscaler_model_path_gui,
|
| 1209 |
-
upscaler_increases_size_gui,
|
| 1210 |
-
hires_steps_gui,
|
| 1211 |
-
hires_denoising_strength_gui,
|
| 1212 |
-
hires_guidance_scale_gui,
|
| 1213 |
-
hires_sampler_gui,
|
| 1214 |
-
hires_schedule_type_gui,
|
| 1215 |
-
image_resolution_gui,
|
| 1216 |
-
strength_gui,
|
| 1217 |
-
lora1_gui,
|
| 1218 |
-
lora_scale_1_gui,
|
| 1219 |
-
lora2_gui,
|
| 1220 |
-
lora_scale_2_gui,
|
| 1221 |
-
lora3_gui,
|
| 1222 |
-
lora_scale_3_gui,
|
| 1223 |
-
lora4_gui,
|
| 1224 |
-
lora_scale_4_gui,
|
| 1225 |
-
lora5_gui,
|
| 1226 |
-
lora_scale_5_gui,
|
| 1227 |
-
lora6_gui,
|
| 1228 |
-
lora_scale_6_gui,
|
| 1229 |
-
lora7_gui,
|
| 1230 |
-
lora_scale_7_gui,
|
| 1231 |
-
],
|
| 1232 |
-
)
|
| 1233 |
-
|
| 1234 |
with gr.Accordion("Examples and help", open=False, visible=True):
|
| 1235 |
gr.Markdown(HELP_GUI)
|
| 1236 |
gr.Markdown(EXAMPLES_GUI_HELP)
|
|
@@ -1286,21 +1167,10 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 1286 |
# "hsl(360, 120, 120)" # in fact any valid colorstring
|
| 1287 |
]
|
| 1288 |
),
|
| 1289 |
-
eraser=gr.Eraser(default_size="16")
|
| 1290 |
-
render=True,
|
| 1291 |
-
visible=False,
|
| 1292 |
-
interactive=False,
|
| 1293 |
)
|
| 1294 |
-
|
| 1295 |
-
show_canvas = gr.Button("SHOW INPAINT CANVAS")
|
| 1296 |
-
|
| 1297 |
-
def change_visibility_canvas():
|
| 1298 |
-
return gr.update(visible=True, interactive=True), gr.update(visible=False)
|
| 1299 |
-
show_canvas.click(change_visibility_canvas, [], [image_base, show_canvas])
|
| 1300 |
-
|
| 1301 |
invert_mask = gr.Checkbox(value=False, label="Invert mask")
|
| 1302 |
btn = gr.Button("Create mask")
|
| 1303 |
-
|
| 1304 |
with gr.Column(scale=1):
|
| 1305 |
img_source = gr.Image(interactive=False)
|
| 1306 |
img_result = gr.Image(label="Mask image", show_label=True, interactive=False)
|
|
@@ -1362,7 +1232,6 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 1362 |
outputs=[load_model_gui],
|
| 1363 |
queue=True,
|
| 1364 |
show_progress="minimal",
|
| 1365 |
-
api_name=(False if HIDE_API else None),
|
| 1366 |
).success(
|
| 1367 |
fn=sd_gen_generate_pipeline, # fn=sd_gen.generate_pipeline,
|
| 1368 |
inputs=[
|
|
@@ -1491,16 +1360,12 @@ with gr.Blocks(theme=args.theme, css=CSS, fill_width=True, fill_height=False) as
|
|
| 1491 |
outputs=[load_model_gui, result_images, actual_task_info],
|
| 1492 |
queue=True,
|
| 1493 |
show_progress="minimal",
|
| 1494 |
-
# api_name=(False if HIDE_API else None),
|
| 1495 |
)
|
| 1496 |
|
| 1497 |
-
|
| 1498 |
-
|
| 1499 |
-
|
| 1500 |
-
|
| 1501 |
-
|
| 1502 |
-
|
| 1503 |
-
|
| 1504 |
-
allowed_paths=[allowed_path],
|
| 1505 |
-
show_api=(not HIDE_API),
|
| 1506 |
-
)
|
|
|
|
| 1 |
import spaces
|
| 2 |
import os
|
|
|
|
| 3 |
from stablepy import (
|
| 4 |
Model_Diffusers,
|
| 5 |
SCHEDULE_TYPE_OPTIONS,
|
|
|
|
| 40 |
DIFFUSERS_CONTROLNET_MODEL,
|
| 41 |
IP_MODELS,
|
| 42 |
MODE_IP_OPTIONS,
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
| 45 |
import torch
|
|
|
|
| 60 |
progress_step_bar,
|
| 61 |
html_template_message,
|
| 62 |
escape_html,
|
|
|
|
| 63 |
)
|
| 64 |
from image_processor import preprocessor_tab
|
| 65 |
from datetime import datetime
|
|
|
|
| 72 |
# import urllib.parse
|
| 73 |
import subprocess
|
| 74 |
|
| 75 |
+
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 77 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 78 |
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
| 79 |
+
print(os.getenv("SPACES_ZERO_GPU"))
|
| 80 |
|
| 81 |
directories = [DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, DIRECTORY_UPSCALERS]
|
| 82 |
for directory in directories:
|
|
|
|
| 84 |
|
| 85 |
# Download stuffs
|
| 86 |
for url in [url.strip() for url in DOWNLOAD_MODEL.split(',')]:
|
| 87 |
+
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
| 88 |
+
download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 89 |
for url in [url.strip() for url in DOWNLOAD_VAE.split(',')]:
|
| 90 |
+
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
| 91 |
+
download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 92 |
for url in [url.strip() for url in DOWNLOAD_LORA.split(',')]:
|
| 93 |
+
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
| 94 |
+
download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 95 |
|
| 96 |
# Download Embeddings
|
| 97 |
for url_embed in DOWNLOAD_EMBEDS:
|
| 98 |
+
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
| 99 |
+
download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY)
|
| 100 |
|
| 101 |
# Build list models
|
| 102 |
embed_list = get_model_list(DIRECTORY_EMBEDS)
|
|
|
|
| 114 |
|
| 115 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
| 116 |
|
| 117 |
+
flux_repo = "camenduru/FLUX.1-dev-diffusers"
|
| 118 |
+
flux_pipe = FluxPipeline.from_pretrained(
|
| 119 |
+
flux_repo,
|
| 120 |
+
transformer=None,
|
| 121 |
+
torch_dtype=torch.bfloat16,
|
| 122 |
+
).to("cuda")
|
| 123 |
+
components = flux_pipe.components
|
| 124 |
+
delete_model(flux_repo)
|
| 125 |
+
# components = None
|
|
|
|
| 126 |
|
| 127 |
#######################
|
| 128 |
# GUI
|
|
|
|
| 132 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
|
| 133 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
| 134 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
| 135 |
+
logger.setLevel(logging.DEBUG)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
CSS = """
|
| 138 |
.contain { display: flex; flex-direction: column; }
|
|
|
|
| 142 |
"""
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
class GuiSD:
|
| 146 |
def __init__(self, stream=True):
|
| 147 |
self.model = None
|
|
|
|
| 150 |
self.last_load = datetime.now()
|
| 151 |
self.inventory = []
|
| 152 |
|
| 153 |
+
def update_storage_models(self, storage_floor_gb=24, required_inventory_for_purge=3):
|
| 154 |
while get_used_storage_gb() > storage_floor_gb:
|
| 155 |
if len(self.inventory) < required_inventory_for_purge:
|
| 156 |
break
|
| 157 |
removal_candidate = self.inventory.pop(0)
|
| 158 |
delete_model(removal_candidate)
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
def update_inventory(self, model_name):
|
| 161 |
if model_name not in single_file_model_list:
|
| 162 |
self.inventory = [
|
|
|
|
| 167 |
def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)):
|
| 168 |
|
| 169 |
# download link model > model_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
self.update_storage_models()
|
|
|
|
| 172 |
|
| 173 |
vae_model = vae_model if vae_model != "None" else None
|
| 174 |
model_type = get_model_type(model_name)
|
| 175 |
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
| 176 |
|
| 177 |
if not os.path.exists(model_name):
|
|
|
|
| 178 |
_ = download_diffuser_repo(
|
| 179 |
repo_name=model_name,
|
| 180 |
model_type=model_type,
|
|
|
|
| 219 |
type_model_precision=dtype_model,
|
| 220 |
retain_task_model_in_cache=False,
|
| 221 |
controlnet_model=controlnet_model,
|
| 222 |
+
device="cpu",
|
| 223 |
env_components=components,
|
| 224 |
)
|
| 225 |
+
self.model.advanced_params(image_preprocessor_cuda_active=True)
|
| 226 |
else:
|
| 227 |
if self.model.base_model_id != model_name:
|
| 228 |
load_now_time = datetime.now()
|
|
|
|
| 232 |
print("Waiting for the previous model's time ops...")
|
| 233 |
time.sleep(9 - elapsed_time)
|
| 234 |
|
| 235 |
+
self.model.device = torch.device("cpu")
|
|
|
|
| 236 |
self.model.load_pipe(
|
| 237 |
model_name,
|
| 238 |
task_name=TASK_STABLEPY[task],
|
|
|
|
| 386 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 387 |
msg_lora = ""
|
| 388 |
|
| 389 |
+
print("Config model:", model_name, vae_model, loras_list)
|
| 390 |
|
| 391 |
task = TASK_STABLEPY[task]
|
| 392 |
|
|
|
|
| 484 |
"distance_threshold": distance_threshold,
|
| 485 |
"recolor_gamma_correction": float(recolor_gamma_correction),
|
| 486 |
"tile_blur_sigma": int(tile_blur_sigma),
|
| 487 |
+
"lora_A": lora1 if lora1 != "None" else None,
|
| 488 |
"lora_scale_A": lora_scale1,
|
| 489 |
+
"lora_B": lora2 if lora2 != "None" else None,
|
| 490 |
"lora_scale_B": lora_scale2,
|
| 491 |
+
"lora_C": lora3 if lora3 != "None" else None,
|
| 492 |
"lora_scale_C": lora_scale3,
|
| 493 |
+
"lora_D": lora4 if lora4 != "None" else None,
|
| 494 |
"lora_scale_D": lora_scale4,
|
| 495 |
+
"lora_E": lora5 if lora5 != "None" else None,
|
| 496 |
"lora_scale_E": lora_scale5,
|
| 497 |
+
"lora_F": lora6 if lora6 != "None" else None,
|
| 498 |
"lora_scale_F": lora_scale6,
|
| 499 |
+
"lora_G": lora7 if lora7 != "None" else None,
|
| 500 |
"lora_scale_G": lora_scale7,
|
| 501 |
"textual_inversion": embed_list if textual_inversion else [],
|
| 502 |
"syntax_weights": syntax_weights, # "Classic"
|
|
|
|
| 554 |
# kwargs for diffusers pipeline
|
| 555 |
if guidance_rescale:
|
| 556 |
pipe_params["guidance_rescale"] = guidance_rescale
|
| 557 |
+
|
| 558 |
+
self.model.device = torch.device("cuda:0")
|
| 559 |
+
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * self.model.num_loras:
|
| 560 |
+
self.model.pipe.transformer.to(self.model.device)
|
| 561 |
+
print("transformer to cuda")
|
| 562 |
|
| 563 |
actual_progress = 0
|
| 564 |
info_images = gr.update()
|
|
|
|
| 588 |
|
| 589 |
download_links = "<br>".join(
|
| 590 |
[
|
| 591 |
+
f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>'
|
| 592 |
for i, path in enumerate(image_path)
|
| 593 |
]
|
| 594 |
)
|
|
|
|
| 697 |
|
| 698 |
@spaces.GPU(duration=15)
|
| 699 |
def process_upscale(image, upscaler_name, upscaler_size):
|
| 700 |
+
if image is None: return None
|
|
|
|
| 701 |
|
| 702 |
from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata
|
| 703 |
from stablepy import load_upscaler_model
|
|
|
|
| 714 |
|
| 715 |
name_upscaler = f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}"
|
| 716 |
|
| 717 |
+
scaler_beta = load_upscaler_model(model=name_upscaler, tile=0, tile_overlap=8, device="cuda", half=True)
|
| 718 |
image_up = scaler_beta.upscale(image, upscaler_size, True)
|
| 719 |
|
| 720 |
image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image)
|
|
|
|
| 723 |
|
| 724 |
|
| 725 |
# https://huggingface.co/spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407
|
| 726 |
+
dynamic_gpu_duration.zerogpu = True
|
| 727 |
+
sd_gen_generate_pipeline.zerogpu = True
|
| 728 |
sd_gen = GuiSD()
|
| 729 |
|
| 730 |
+
with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
| 731 |
gr.Markdown("# 🧩 DiffuseCraft")
|
| 732 |
gr.Markdown(SUBTITLE_GUI)
|
| 733 |
with gr.Tab("Generation"):
|
|
|
|
| 776 |
|
| 777 |
actual_task_info = gr.HTML()
|
| 778 |
|
| 779 |
+
with gr.Row(equal_height=False, variant="default"):
|
| 780 |
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
|
| 781 |
with gr.Column():
|
| 782 |
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
|
|
|
|
| 812 |
"Schedule type": gr.update(value="Automatic"),
|
| 813 |
"PAG": gr.update(value=.0),
|
| 814 |
"FreeU": gr.update(value=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 815 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 816 |
valid_keys = list(valid_receptors.keys())
|
| 817 |
|
| 818 |
parameters = extract_parameters(base_prompt)
|
|
|
|
| 826 |
parameters["Sampler"] = value_sampler
|
| 827 |
parameters["Schedule type"] = s_type
|
| 828 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 829 |
for key, val in parameters.items():
|
| 830 |
# print(val)
|
| 831 |
if key in valid_keys:
|
|
|
|
| 833 |
if key == "Sampler":
|
| 834 |
if val not in scheduler_names:
|
| 835 |
continue
|
| 836 |
+
if key == "Schedule type":
|
| 837 |
if val not in SCHEDULE_TYPE_OPTIONS:
|
| 838 |
+
val = "Automatic"
|
|
|
|
|
|
|
|
|
|
| 839 |
elif key == "Clip skip":
|
| 840 |
if "," in str(val):
|
| 841 |
val = val.replace(",", "")
|
|
|
|
| 843 |
val = True
|
| 844 |
if key == "prompt":
|
| 845 |
if ">" in val and "<" in val:
|
| 846 |
+
val = re.sub(r'<[^>]+>', '', val)
|
| 847 |
print("Removed LoRA written in the prompt")
|
| 848 |
if key in ["prompt", "neg_prompt"]:
|
| 849 |
val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip()
|
| 850 |
+
if key in ["Steps", "width", "height", "Seed"]:
|
| 851 |
val = int(val)
|
| 852 |
if key == "FreeU":
|
| 853 |
val = True
|
| 854 |
+
if key in ["CFG scale", "PAG"]:
|
| 855 |
val = float(val)
|
| 856 |
if key == "Model":
|
| 857 |
filtered_models = [m for m in model_list if val in m]
|
|
|
|
| 859 |
val = filtered_models[0]
|
| 860 |
else:
|
| 861 |
val = name_model
|
|
|
|
|
|
|
|
|
|
| 862 |
if key == "Seed":
|
| 863 |
continue
|
|
|
|
| 864 |
valid_receptors[key] = gr.update(value=val)
|
| 865 |
# print(val, type(val))
|
| 866 |
# print(valid_receptors)
|
|
|
|
| 868 |
print(str(e))
|
| 869 |
return [value for value in valid_receptors.values()]
|
| 870 |
|
| 871 |
+
set_params_gui.click(
|
| 872 |
+
run_set_params_gui, [prompt_gui, model_name_gui], [
|
| 873 |
+
prompt_gui,
|
| 874 |
+
neg_prompt_gui,
|
| 875 |
+
steps_gui,
|
| 876 |
+
img_width_gui,
|
| 877 |
+
img_height_gui,
|
| 878 |
+
seed_gui,
|
| 879 |
+
sampler_gui,
|
| 880 |
+
cfg_gui,
|
| 881 |
+
clip_skip_gui,
|
| 882 |
+
model_name_gui,
|
| 883 |
+
schedule_type_gui,
|
| 884 |
+
pag_scale_gui,
|
| 885 |
+
free_u_gui,
|
| 886 |
+
],
|
| 887 |
+
)
|
| 888 |
+
|
| 889 |
def run_clear_prompt_gui():
|
| 890 |
return gr.update(value=""), gr.update(value="")
|
| 891 |
clear_prompt_gui.click(
|
|
|
|
| 898 |
run_set_random_seed, [], seed_gui
|
| 899 |
)
|
| 900 |
|
| 901 |
+
num_images_gui = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Images")
|
| 902 |
+
prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1])
|
| 903 |
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0])
|
| 904 |
|
| 905 |
with gr.Accordion("Hires fix", open=False, visible=True):
|
| 906 |
|
| 907 |
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
|
| 908 |
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by")
|
| 909 |
+
upscaler_tile_size_gui = gr.Slider(minimum=0, maximum=512, step=16, value=0, label="Upscaler Tile Size", info="0 = no tiling")
|
| 910 |
upscaler_tile_overlap_gui = gr.Slider(minimum=0, maximum=48, step=1, value=8, label="Upscaler Tile Overlap")
|
| 911 |
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
|
| 912 |
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
|
|
|
|
| 923 |
return gr.Dropdown(label=label, choices=lora_model_list, value="None", allow_custom_value=True, visible=visible)
|
| 924 |
|
| 925 |
def lora_scale_slider(label, visible=True):
|
| 926 |
+
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label=label, visible=visible)
|
|
|
|
| 927 |
|
| 928 |
lora1_gui = lora_dropdown("Lora1")
|
| 929 |
lora_scale_1_gui = lora_scale_slider("Lora Scale 1")
|
|
|
|
| 935 |
lora_scale_4_gui = lora_scale_slider("Lora Scale 4")
|
| 936 |
lora5_gui = lora_dropdown("Lora5")
|
| 937 |
lora_scale_5_gui = lora_scale_slider("Lora Scale 5")
|
| 938 |
+
lora6_gui = lora_dropdown("Lora6", visible=False)
|
| 939 |
+
lora_scale_6_gui = lora_scale_slider("Lora Scale 6", visible=False)
|
| 940 |
+
lora7_gui = lora_dropdown("Lora7", visible=False)
|
| 941 |
+
lora_scale_7_gui = lora_scale_slider("Lora Scale 7", visible=False)
|
| 942 |
|
| 943 |
with gr.Accordion("From URL", open=False, visible=True):
|
| 944 |
text_lora = gr.Textbox(
|
|
|
|
| 947 |
lines=1,
|
| 948 |
info="It has to be .safetensors files, and you can also download them from Hugging Face.",
|
| 949 |
)
|
| 950 |
+
romanize_text = gr.Checkbox(value=False, label="Transliterate name", visible=False)
|
| 951 |
button_lora = gr.Button("Get and Refresh the LoRA Lists")
|
| 952 |
new_lora_status = gr.HTML()
|
| 953 |
button_lora.click(
|
|
|
|
| 1012 |
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
|
| 1013 |
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
|
| 1014 |
high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
|
| 1015 |
+
value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
|
| 1016 |
+
distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
|
| 1017 |
recolor_gamma_correction_gui = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
|
| 1018 |
tile_blur_sigma_gui = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma")
|
| 1019 |
|
|
|
|
| 1048 |
gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded")
|
| 1049 |
return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES)
|
| 1050 |
|
| 1051 |
+
style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui])
|
| 1052 |
|
| 1053 |
with gr.Accordion("Textual inversion", open=False, visible=False):
|
| 1054 |
active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt")
|
|
|
|
| 1098 |
hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer")
|
| 1099 |
hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer")
|
| 1100 |
generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1101 |
|
| 1102 |
with gr.Accordion("More settings", open=False, visible=False):
|
| 1103 |
loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation")
|
| 1104 |
retain_task_cache_gui = gr.Checkbox(value=False, label="Retain task model in cache")
|
| 1105 |
+
leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar")
|
| 1106 |
+
disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar")
|
| 1107 |
display_images_gui = gr.Checkbox(value=False, label="Display Images")
|
| 1108 |
image_previews_gui = gr.Checkbox(value=True, label="Image Previews")
|
| 1109 |
+
image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location")
|
| 1110 |
retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load")
|
| 1111 |
retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load")
|
| 1112 |
retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load")
|
| 1113 |
xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention")
|
| 1114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1115 |
with gr.Accordion("Examples and help", open=False, visible=True):
|
| 1116 |
gr.Markdown(HELP_GUI)
|
| 1117 |
gr.Markdown(EXAMPLES_GUI_HELP)
|
|
|
|
| 1167 |
# "hsl(360, 120, 120)" # in fact any valid colorstring
|
| 1168 |
]
|
| 1169 |
),
|
| 1170 |
+
eraser=gr.Eraser(default_size="16")
|
|
|
|
|
|
|
|
|
|
| 1171 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1172 |
invert_mask = gr.Checkbox(value=False, label="Invert mask")
|
| 1173 |
btn = gr.Button("Create mask")
|
|
|
|
| 1174 |
with gr.Column(scale=1):
|
| 1175 |
img_source = gr.Image(interactive=False)
|
| 1176 |
img_result = gr.Image(label="Mask image", show_label=True, interactive=False)
|
|
|
|
| 1232 |
outputs=[load_model_gui],
|
| 1233 |
queue=True,
|
| 1234 |
show_progress="minimal",
|
|
|
|
| 1235 |
).success(
|
| 1236 |
fn=sd_gen_generate_pipeline, # fn=sd_gen.generate_pipeline,
|
| 1237 |
inputs=[
|
|
|
|
| 1360 |
outputs=[load_model_gui, result_images, actual_task_info],
|
| 1361 |
queue=True,
|
| 1362 |
show_progress="minimal",
|
|
|
|
| 1363 |
)
|
| 1364 |
|
| 1365 |
+
app.queue()
|
| 1366 |
+
|
| 1367 |
+
app.launch(
|
| 1368 |
+
show_error=True,
|
| 1369 |
+
debug=True,
|
| 1370 |
+
allowed_paths=["./images/"],
|
| 1371 |
+
)
|
|
|
|
|
|
|
|
|
constants.py
CHANGED
|
@@ -7,13 +7,10 @@ from stablepy import (
|
|
| 7 |
ALL_BUILTIN_UPSCALERS,
|
| 8 |
IP_ADAPTERS_SD,
|
| 9 |
IP_ADAPTERS_SDXL,
|
| 10 |
-
PROMPT_WEIGHT_OPTIONS_PRIORITY,
|
| 11 |
)
|
| 12 |
|
| 13 |
-
IS_ZERO_GPU = bool(os.getenv("SPACES_ZERO_GPU"))
|
| 14 |
-
|
| 15 |
# - **Download Models**
|
| 16 |
-
DOWNLOAD_MODEL = "https://huggingface.co/
|
| 17 |
|
| 18 |
# - **Download VAEs**
|
| 19 |
DOWNLOAD_VAE = "https://huggingface.co/fp16-guy/anything_kl-f8-anime2_vae-ft-mse-840000-ema-pruned_blessed_clearvae_fp16_cleaned/resolve/main/vae-ft-mse-840000-ema-pruned_fp16.safetensors?download=true"
|
|
@@ -26,12 +23,12 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 26 |
'Laxhar/noobai-XL-1.1',
|
| 27 |
'Laxhar/noobai-XL-Vpred-1.0',
|
| 28 |
'black-forest-labs/FLUX.1-dev',
|
| 29 |
-
'black-forest-labs/FLUX.1-Krea-dev',
|
| 30 |
'John6666/blue-pencil-flux1-v021-fp8-flux',
|
| 31 |
'John6666/wai-ani-flux-v10forfp8-fp8-flux',
|
| 32 |
'John6666/xe-anime-flux-v04-fp8-flux',
|
| 33 |
'John6666/lyh-anime-flux-v2a1-fp8-flux',
|
| 34 |
'John6666/carnival-unchained-v10-fp8-flux',
|
|
|
|
| 35 |
'Freepik/flux.1-lite-8B-alpha',
|
| 36 |
'shauray/FluxDev-HyperSD-merged',
|
| 37 |
'mikeyandfriends/PixelWave_FLUX.1-dev_03',
|
|
@@ -40,19 +37,23 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 40 |
# 'ostris/OpenFLUX.1',
|
| 41 |
'shuttleai/shuttle-3-diffusion',
|
| 42 |
'Laxhar/noobai-XL-1.0',
|
|
|
|
| 43 |
'Laxhar/noobai-XL-0.77',
|
| 44 |
'John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl',
|
| 45 |
'Laxhar/noobai-XL-0.6',
|
| 46 |
'John6666/noobai-xl-nai-xl-epsilonpred05version-sdxl',
|
| 47 |
'John6666/noobai-cyberfix-v10-sdxl',
|
| 48 |
'John6666/noobaiiter-xl-vpred-v075-sdxl',
|
| 49 |
-
'John6666/
|
| 50 |
-
'John6666/
|
|
|
|
|
|
|
| 51 |
'John6666/ntr-mix-illustrious-xl-noob-xl-xi-sdxl',
|
| 52 |
'John6666/ntr-mix-illustrious-xl-noob-xl-xii-sdxl',
|
| 53 |
'John6666/ntr-mix-illustrious-xl-noob-xl-xiii-sdxl',
|
| 54 |
'John6666/mistoon-anime-v10illustrious-sdxl',
|
| 55 |
-
'John6666/hassaku-xl-illustrious-
|
|
|
|
| 56 |
'John6666/haruki-mix-illustrious-v10-sdxl',
|
| 57 |
'John6666/noobreal-v10-sdxl',
|
| 58 |
'John6666/complicated-noobai-merge-vprediction-sdxl',
|
|
@@ -63,7 +64,6 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 63 |
'Laxhar/noobai-XL-Vpred-0.65',
|
| 64 |
'Laxhar/noobai-XL-Vpred-0.6',
|
| 65 |
'John6666/cat-tower-noobai-xl-checkpoint-v14vpred-sdxl',
|
| 66 |
-
'John6666/cat-tower-noobai-xl-checkpoint-v15vpred-sdxl',
|
| 67 |
'John6666/noobai-xl-nai-xl-vpred05version-sdxl',
|
| 68 |
'John6666/noobai-fusion2-vpred-itercomp-v1-sdxl',
|
| 69 |
'John6666/noobai-xl-nai-xl-vpredtestversion-sdxl',
|
|
@@ -74,34 +74,19 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 74 |
'John6666/obsession-illustriousxl-v21-sdxl',
|
| 75 |
'John6666/obsession-illustriousxl-v30-sdxl',
|
| 76 |
'John6666/obsession-illustriousxl-v31-sdxl',
|
| 77 |
-
'John6666/one-obsession-13-sdxl',
|
| 78 |
-
'John6666/one-obsession-14-24d-sdxl',
|
| 79 |
-
'John6666/one-obsession-15-noobai-sdxl',
|
| 80 |
-
'John6666/one-obsession-v16-noobai-sdxl',
|
| 81 |
-
'John6666/prefect-illustrious-xl-v3-sdxl',
|
| 82 |
'John6666/wai-nsfw-illustrious-v70-sdxl',
|
| 83 |
-
'John6666/wai-nsfw-illustrious-sdxl-v140-sdxl',
|
| 84 |
'John6666/illustrious-pony-mix-v3-sdxl',
|
| 85 |
-
'John6666/nova-anime-xl-
|
| 86 |
-
'John6666/nova-
|
| 87 |
-
'John6666/nova-orange-xl-re-v10-sdxl',
|
| 88 |
-
'John6666/nova-orange-xl-v110-sdxl',
|
| 89 |
-
'John6666/nova-orange-xl-re-v20-sdxl',
|
| 90 |
-
'John6666/nova-unreal-xl-v60-sdxl',
|
| 91 |
-
'John6666/nova-unreal-xl-v70-sdxl',
|
| 92 |
-
'John6666/nova-unreal-xl-v80-sdxl',
|
| 93 |
-
'John6666/nova-cartoon-xl-v40-sdxl',
|
| 94 |
'John6666/silvermoon-mix03-illustrious-v10-sdxl',
|
| 95 |
'eienmojiki/Anything-XL',
|
| 96 |
'eienmojiki/Starry-XL-v5.2',
|
| 97 |
-
'votepurchase/plantMilkModelSuite_walnut',
|
| 98 |
'John6666/meinaxl-v2-sdxl',
|
| 99 |
'Eugeoter/artiwaifu-diffusion-2.0',
|
| 100 |
'comin/IterComp',
|
| 101 |
-
'John6666/epicrealism-xl-v8kiss-sdxl',
|
| 102 |
-
'John6666/epicrealism-xl-v10kiss2-sdxl',
|
| 103 |
'John6666/epicrealism-xl-vxiabeast-sdxl',
|
| 104 |
-
'John6666/epicrealism-xl-
|
|
|
|
| 105 |
'misri/zavychromaxl_v80',
|
| 106 |
'SG161222/RealVisXL_V4.0',
|
| 107 |
'SG161222/RealVisXL_V5.0',
|
|
@@ -117,10 +102,8 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 117 |
'John6666/ebara-mfcg-pony-mix-v12-sdxl',
|
| 118 |
'John6666/t-ponynai3-v51-sdxl',
|
| 119 |
'John6666/t-ponynai3-v65-sdxl',
|
| 120 |
-
'John6666/t-ponynai3-v7-sdxl',
|
| 121 |
'John6666/prefect-pony-xl-v3-sdxl',
|
| 122 |
'John6666/prefect-pony-xl-v4-sdxl',
|
| 123 |
-
'John6666/prefect-pony-xl-v50-sdxl',
|
| 124 |
'John6666/mala-anime-mix-nsfw-pony-xl-v5-sdxl',
|
| 125 |
'John6666/wai-ani-nsfw-ponyxl-v10-sdxl',
|
| 126 |
'John6666/wai-real-mix-v11-sdxl',
|
|
@@ -128,14 +111,13 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 128 |
'John6666/wai-c-v6-sdxl',
|
| 129 |
'John6666/iniverse-mix-xl-sfwnsfw-pony-guofeng-v43-sdxl',
|
| 130 |
'John6666/sifw-annihilation-xl-v2-sdxl',
|
| 131 |
-
'John6666/sifw-annihilation-xl-v305illustrious-beta-sdxl',
|
| 132 |
'John6666/photo-realistic-pony-v5-sdxl',
|
| 133 |
'John6666/pony-realism-v21main-sdxl',
|
| 134 |
'John6666/pony-realism-v22main-sdxl',
|
| 135 |
-
'John6666/pony-
|
|
|
|
| 136 |
'John6666/cyberrealistic-pony-v65-sdxl',
|
| 137 |
'John6666/cyberrealistic-pony-v7-sdxl',
|
| 138 |
-
'John6666/cyberrealistic-pony-v127-alternative-sdxl',
|
| 139 |
'GraydientPlatformAPI/realcartoon-pony-diffusion',
|
| 140 |
'John6666/nova-anime-xl-pony-v5-sdxl',
|
| 141 |
'John6666/autismmix-sdxl-autismmix-pony-sdxl',
|
|
@@ -145,15 +127,13 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 145 |
'John6666/duchaiten-pony-real-v11fix-sdxl',
|
| 146 |
'John6666/duchaiten-pony-real-v20-sdxl',
|
| 147 |
'John6666/duchaiten-pony-xl-no-score-v70-sdxl',
|
|
|
|
|
|
|
| 148 |
'KBlueLeaf/Kohaku-XL-Zeta',
|
| 149 |
'cagliostrolab/animagine-xl-3.1',
|
| 150 |
-
'cagliostrolab/animagine-xl-4.0',
|
| 151 |
'yodayo-ai/kivotos-xl-2.0',
|
| 152 |
'yodayo-ai/holodayo-xl-2.1',
|
| 153 |
'yodayo-ai/clandestine-xl-1.0',
|
| 154 |
-
'https://huggingface.co/chemwolf/Karmix-XL-v0/resolve/main/Karmix-XL-v0.safetensors?download=true',
|
| 155 |
-
'https://civitai.com/api/download/models/128713?type=Model&format=SafeTensor&size=pruned&fp=fp16',
|
| 156 |
-
'https://civitai.com/models/30240?modelVersionId=125771',
|
| 157 |
'digiplay/majicMIX_sombre_v2',
|
| 158 |
'digiplay/majicMIX_realistic_v6',
|
| 159 |
'digiplay/majicMIX_realistic_v7',
|
|
@@ -179,9 +159,9 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 179 |
'GraydientPlatformAPI/realcartoon3d-17',
|
| 180 |
'GraydientPlatformAPI/realcartoon-pixar11',
|
| 181 |
'GraydientPlatformAPI/realcartoon-real17',
|
|
|
|
| 182 |
]
|
| 183 |
|
| 184 |
-
|
| 185 |
DIFFUSERS_FORMAT_LORAS = [
|
| 186 |
"nerijs/animation2k-flux",
|
| 187 |
"XLabs-AI/flux-RealismLora",
|
|
@@ -203,11 +183,8 @@ DIRECTORY_VAES = 'vaes'
|
|
| 203 |
DIRECTORY_EMBEDS = 'embedings'
|
| 204 |
DIRECTORY_UPSCALERS = 'upscalers'
|
| 205 |
|
|
|
|
| 206 |
STORAGE_ROOT = "/home/user/"
|
| 207 |
-
CACHE_HF_ROOT = os.path.expanduser("~/.cache/huggingface")
|
| 208 |
-
CACHE_HF = os.path.join(CACHE_HF_ROOT, "hub")
|
| 209 |
-
if IS_ZERO_GPU:
|
| 210 |
-
os.environ["HF_HOME"] = CACHE_HF
|
| 211 |
|
| 212 |
TASK_STABLEPY = {
|
| 213 |
'txt2img': 'txt2img',
|
|
@@ -249,7 +226,6 @@ UPSCALER_DICT_GUI = {
|
|
| 249 |
# "realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
| 250 |
# "realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
| 251 |
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
| 252 |
-
"Real-ESRGAN-Anime-finetuning": "https://huggingface.co/danhtran2mind/Real-ESRGAN-Anime-finetuning/resolve/main/Real-ESRGAN-Anime-finetuning.pth",
|
| 253 |
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
| 254 |
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
| 255 |
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
|
@@ -322,9 +298,15 @@ DIFFUSERS_CONTROLNET_MODEL = [
|
|
| 322 |
# "InstantX/FLUX.1-dev-Controlnet-Canny",
|
| 323 |
]
|
| 324 |
|
| 325 |
-
PROMPT_W_OPTIONS = [
|
| 326 |
-
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
WARNING_MSG_VAE = (
|
| 330 |
"Use the right VAE for your model to maintain image quality. The wrong"
|
|
@@ -377,11 +359,9 @@ SUBTITLE_GUI = (
|
|
| 377 |
" to perform different tasks in image generation."
|
| 378 |
)
|
| 379 |
|
| 380 |
-
msg_zero = "" if not IS_ZERO_GPU else "- The current space runs on a ZERO GPU which is assigned for approximately 60 seconds; Therefore, if you submit expensive tasks, the operation may be canceled upon reaching the maximum allowed time with 'GPU TASK ABORTED'."
|
| 381 |
-
|
| 382 |
HELP_GUI = (
|
| 383 |
-
|
| 384 |
-
|
| 385 |
- Distorted or strange images often result from high prompt weights, so it's best to use low weights and scales, and consider using Classic variants like 'Classic-original'.
|
| 386 |
- For better results with Pony Diffusion, try using sampler DPM++ 1s or DPM2 with Compel or Classic prompt weights.
|
| 387 |
"""
|
|
@@ -505,7 +485,7 @@ EXAMPLES_GUI = [
|
|
| 505 |
20,
|
| 506 |
4.0,
|
| 507 |
-1,
|
| 508 |
-
|
| 509 |
1.0,
|
| 510 |
"DPM++ 2M SDE",
|
| 511 |
1024,
|
|
@@ -600,7 +580,6 @@ EXAMPLES_GUI = [
|
|
| 600 |
RESOURCES = (
|
| 601 |
"""### Resources
|
| 602 |
- John6666's space has some great features you might find helpful [link](https://huggingface.co/spaces/John6666/DiffuseCraftMod).
|
| 603 |
-
-
|
| 604 |
-
- `DiffuseCraft` in Colab:[link](https://github.com/R3gm/DiffuseCraft?tab=readme-ov-file#diffusecraft).
|
| 605 |
"""
|
| 606 |
-
)
|
|
|
|
| 7 |
ALL_BUILTIN_UPSCALERS,
|
| 8 |
IP_ADAPTERS_SD,
|
| 9 |
IP_ADAPTERS_SDXL,
|
|
|
|
| 10 |
)
|
| 11 |
|
|
|
|
|
|
|
| 12 |
# - **Download Models**
|
| 13 |
+
DOWNLOAD_MODEL = "https://huggingface.co/TechnoByte/MilkyWonderland/resolve/main/milkyWonderland_v40.safetensors"
|
| 14 |
|
| 15 |
# - **Download VAEs**
|
| 16 |
DOWNLOAD_VAE = "https://huggingface.co/fp16-guy/anything_kl-f8-anime2_vae-ft-mse-840000-ema-pruned_blessed_clearvae_fp16_cleaned/resolve/main/vae-ft-mse-840000-ema-pruned_fp16.safetensors?download=true"
|
|
|
|
| 23 |
'Laxhar/noobai-XL-1.1',
|
| 24 |
'Laxhar/noobai-XL-Vpred-1.0',
|
| 25 |
'black-forest-labs/FLUX.1-dev',
|
|
|
|
| 26 |
'John6666/blue-pencil-flux1-v021-fp8-flux',
|
| 27 |
'John6666/wai-ani-flux-v10forfp8-fp8-flux',
|
| 28 |
'John6666/xe-anime-flux-v04-fp8-flux',
|
| 29 |
'John6666/lyh-anime-flux-v2a1-fp8-flux',
|
| 30 |
'John6666/carnival-unchained-v10-fp8-flux',
|
| 31 |
+
'John6666/iniverse-mix-xl-sfwnsfw-fluxdfp16nsfwv11-fp8-flux',
|
| 32 |
'Freepik/flux.1-lite-8B-alpha',
|
| 33 |
'shauray/FluxDev-HyperSD-merged',
|
| 34 |
'mikeyandfriends/PixelWave_FLUX.1-dev_03',
|
|
|
|
| 37 |
# 'ostris/OpenFLUX.1',
|
| 38 |
'shuttleai/shuttle-3-diffusion',
|
| 39 |
'Laxhar/noobai-XL-1.0',
|
| 40 |
+
'John6666/noobai-xl-nai-xl-epsilonpred10version-sdxl',
|
| 41 |
'Laxhar/noobai-XL-0.77',
|
| 42 |
'John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl',
|
| 43 |
'Laxhar/noobai-XL-0.6',
|
| 44 |
'John6666/noobai-xl-nai-xl-epsilonpred05version-sdxl',
|
| 45 |
'John6666/noobai-cyberfix-v10-sdxl',
|
| 46 |
'John6666/noobaiiter-xl-vpred-v075-sdxl',
|
| 47 |
+
'John6666/ntr-mix-illustrious-xl-noob-xl-v40-sdxl',
|
| 48 |
+
'John6666/ntr-mix-illustrious-xl-noob-xl-ntrmix35-sdxl',
|
| 49 |
+
'John6666/ntr-mix-illustrious-xl-noob-xl-v777-sdxl',
|
| 50 |
+
'John6666/ntr-mix-illustrious-xl-noob-xl-v777forlora-sdxl',
|
| 51 |
'John6666/ntr-mix-illustrious-xl-noob-xl-xi-sdxl',
|
| 52 |
'John6666/ntr-mix-illustrious-xl-noob-xl-xii-sdxl',
|
| 53 |
'John6666/ntr-mix-illustrious-xl-noob-xl-xiii-sdxl',
|
| 54 |
'John6666/mistoon-anime-v10illustrious-sdxl',
|
| 55 |
+
'John6666/hassaku-xl-illustrious-v10-sdxl',
|
| 56 |
+
'John6666/hassaku-xl-illustrious-v10style-sdxl',
|
| 57 |
'John6666/haruki-mix-illustrious-v10-sdxl',
|
| 58 |
'John6666/noobreal-v10-sdxl',
|
| 59 |
'John6666/complicated-noobai-merge-vprediction-sdxl',
|
|
|
|
| 64 |
'Laxhar/noobai-XL-Vpred-0.65',
|
| 65 |
'Laxhar/noobai-XL-Vpred-0.6',
|
| 66 |
'John6666/cat-tower-noobai-xl-checkpoint-v14vpred-sdxl',
|
|
|
|
| 67 |
'John6666/noobai-xl-nai-xl-vpred05version-sdxl',
|
| 68 |
'John6666/noobai-fusion2-vpred-itercomp-v1-sdxl',
|
| 69 |
'John6666/noobai-xl-nai-xl-vpredtestversion-sdxl',
|
|
|
|
| 74 |
'John6666/obsession-illustriousxl-v21-sdxl',
|
| 75 |
'John6666/obsession-illustriousxl-v30-sdxl',
|
| 76 |
'John6666/obsession-illustriousxl-v31-sdxl',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
'John6666/wai-nsfw-illustrious-v70-sdxl',
|
|
|
|
| 78 |
'John6666/illustrious-pony-mix-v3-sdxl',
|
| 79 |
+
'John6666/nova-anime-xl-illustriousv10-sdxl',
|
| 80 |
+
'John6666/nova-orange-xl-v30-sdxl',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
'John6666/silvermoon-mix03-illustrious-v10-sdxl',
|
| 82 |
'eienmojiki/Anything-XL',
|
| 83 |
'eienmojiki/Starry-XL-v5.2',
|
|
|
|
| 84 |
'John6666/meinaxl-v2-sdxl',
|
| 85 |
'Eugeoter/artiwaifu-diffusion-2.0',
|
| 86 |
'comin/IterComp',
|
|
|
|
|
|
|
| 87 |
'John6666/epicrealism-xl-vxiabeast-sdxl',
|
| 88 |
+
'John6666/epicrealism-xl-v10kiss2-sdxl',
|
| 89 |
+
'John6666/epicrealism-xl-v8kiss-sdxl',
|
| 90 |
'misri/zavychromaxl_v80',
|
| 91 |
'SG161222/RealVisXL_V4.0',
|
| 92 |
'SG161222/RealVisXL_V5.0',
|
|
|
|
| 102 |
'John6666/ebara-mfcg-pony-mix-v12-sdxl',
|
| 103 |
'John6666/t-ponynai3-v51-sdxl',
|
| 104 |
'John6666/t-ponynai3-v65-sdxl',
|
|
|
|
| 105 |
'John6666/prefect-pony-xl-v3-sdxl',
|
| 106 |
'John6666/prefect-pony-xl-v4-sdxl',
|
|
|
|
| 107 |
'John6666/mala-anime-mix-nsfw-pony-xl-v5-sdxl',
|
| 108 |
'John6666/wai-ani-nsfw-ponyxl-v10-sdxl',
|
| 109 |
'John6666/wai-real-mix-v11-sdxl',
|
|
|
|
| 111 |
'John6666/wai-c-v6-sdxl',
|
| 112 |
'John6666/iniverse-mix-xl-sfwnsfw-pony-guofeng-v43-sdxl',
|
| 113 |
'John6666/sifw-annihilation-xl-v2-sdxl',
|
|
|
|
| 114 |
'John6666/photo-realistic-pony-v5-sdxl',
|
| 115 |
'John6666/pony-realism-v21main-sdxl',
|
| 116 |
'John6666/pony-realism-v22main-sdxl',
|
| 117 |
+
'John6666/cyberrealistic-pony-v63-sdxl',
|
| 118 |
+
'John6666/cyberrealistic-pony-v64-sdxl',
|
| 119 |
'John6666/cyberrealistic-pony-v65-sdxl',
|
| 120 |
'John6666/cyberrealistic-pony-v7-sdxl',
|
|
|
|
| 121 |
'GraydientPlatformAPI/realcartoon-pony-diffusion',
|
| 122 |
'John6666/nova-anime-xl-pony-v5-sdxl',
|
| 123 |
'John6666/autismmix-sdxl-autismmix-pony-sdxl',
|
|
|
|
| 127 |
'John6666/duchaiten-pony-real-v11fix-sdxl',
|
| 128 |
'John6666/duchaiten-pony-real-v20-sdxl',
|
| 129 |
'John6666/duchaiten-pony-xl-no-score-v70-sdxl',
|
| 130 |
+
'odyssey-labs/OdysseyXL-3.0',
|
| 131 |
+
'odyssey-labs/OdysseyXL-4.0',
|
| 132 |
'KBlueLeaf/Kohaku-XL-Zeta',
|
| 133 |
'cagliostrolab/animagine-xl-3.1',
|
|
|
|
| 134 |
'yodayo-ai/kivotos-xl-2.0',
|
| 135 |
'yodayo-ai/holodayo-xl-2.1',
|
| 136 |
'yodayo-ai/clandestine-xl-1.0',
|
|
|
|
|
|
|
|
|
|
| 137 |
'digiplay/majicMIX_sombre_v2',
|
| 138 |
'digiplay/majicMIX_realistic_v6',
|
| 139 |
'digiplay/majicMIX_realistic_v7',
|
|
|
|
| 159 |
'GraydientPlatformAPI/realcartoon3d-17',
|
| 160 |
'GraydientPlatformAPI/realcartoon-pixar11',
|
| 161 |
'GraydientPlatformAPI/realcartoon-real17',
|
| 162 |
+
'nitrosocke/Ghibli-Diffusion',
|
| 163 |
]
|
| 164 |
|
|
|
|
| 165 |
DIFFUSERS_FORMAT_LORAS = [
|
| 166 |
"nerijs/animation2k-flux",
|
| 167 |
"XLabs-AI/flux-RealismLora",
|
|
|
|
| 183 |
DIRECTORY_EMBEDS = 'embedings'
|
| 184 |
DIRECTORY_UPSCALERS = 'upscalers'
|
| 185 |
|
| 186 |
+
CACHE_HF = "/home/user/.cache/huggingface/hub/"
|
| 187 |
STORAGE_ROOT = "/home/user/"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
TASK_STABLEPY = {
|
| 190 |
'txt2img': 'txt2img',
|
|
|
|
| 226 |
# "realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
| 227 |
# "realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
| 228 |
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
|
|
|
| 229 |
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
| 230 |
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
| 231 |
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
|
|
|
| 298 |
# "InstantX/FLUX.1-dev-Controlnet-Canny",
|
| 299 |
]
|
| 300 |
|
| 301 |
+
PROMPT_W_OPTIONS = [
|
| 302 |
+
("Compel format: (word)weight", "Compel"),
|
| 303 |
+
("Classic format: (word:weight)", "Classic"),
|
| 304 |
+
("Classic-original format: (word:weight)", "Classic-original"),
|
| 305 |
+
("Classic-no_norm format: (word:weight)", "Classic-no_norm"),
|
| 306 |
+
("Classic-sd_embed format: (word:weight)", "Classic-sd_embed"),
|
| 307 |
+
("Classic-ignore", "Classic-ignore"),
|
| 308 |
+
("None", "None"),
|
| 309 |
+
]
|
| 310 |
|
| 311 |
WARNING_MSG_VAE = (
|
| 312 |
"Use the right VAE for your model to maintain image quality. The wrong"
|
|
|
|
| 359 |
" to perform different tasks in image generation."
|
| 360 |
)
|
| 361 |
|
|
|
|
|
|
|
| 362 |
HELP_GUI = (
|
| 363 |
+
"""### Help:
|
| 364 |
+
- The current space runs on a ZERO GPU which is assigned for approximately 60 seconds; Therefore, if you submit expensive tasks, the operation may be canceled upon reaching the maximum allowed time with 'GPU TASK ABORTED'.
|
| 365 |
- Distorted or strange images often result from high prompt weights, so it's best to use low weights and scales, and consider using Classic variants like 'Classic-original'.
|
| 366 |
- For better results with Pony Diffusion, try using sampler DPM++ 1s or DPM2 with Compel or Classic prompt weights.
|
| 367 |
"""
|
|
|
|
| 485 |
20,
|
| 486 |
4.0,
|
| 487 |
-1,
|
| 488 |
+
"loras/Coloring_book_-_LineArt.safetensors",
|
| 489 |
1.0,
|
| 490 |
"DPM++ 2M SDE",
|
| 491 |
1024,
|
|
|
|
| 580 |
RESOURCES = (
|
| 581 |
"""### Resources
|
| 582 |
- John6666's space has some great features you might find helpful [link](https://huggingface.co/spaces/John6666/DiffuseCraftMod).
|
| 583 |
+
- You can also try the image generator in Colab’s free tier, which provides free GPU [link](https://github.com/R3gm/SD_diffusers_interactive).
|
|
|
|
| 584 |
"""
|
| 585 |
+
)
|
image_processor.py
CHANGED
|
@@ -92,8 +92,8 @@ def preprocessor_tab():
|
|
| 92 |
pre_processor_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
|
| 93 |
pre_low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
|
| 94 |
pre_high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
|
| 95 |
-
pre_value_threshold = gr.Slider(minimum=
|
| 96 |
-
pre_distance_threshold = gr.Slider(minimum=
|
| 97 |
pre_recolor_mode = gr.Dropdown(label="'RECOLOR' mode", choices=["luminance", "intensity"], value="luminance")
|
| 98 |
pre_recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
|
| 99 |
pre_blur_k_size = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'BLUR' sigma")
|
|
|
|
| 92 |
pre_processor_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
|
| 93 |
pre_low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
|
| 94 |
pre_high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
|
| 95 |
+
pre_value_threshold = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
|
| 96 |
+
pre_distance_threshold = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
|
| 97 |
pre_recolor_mode = gr.Dropdown(label="'RECOLOR' mode", choices=["luminance", "intensity"], value="luminance")
|
| 98 |
pre_recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
|
| 99 |
pre_blur_k_size = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'BLUR' sigma")
|
packages.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
git-lfs
|
| 2 |
-
aria2
|
| 3 |
ffmpeg
|
|
|
|
| 1 |
git-lfs
|
| 2 |
+
aria2 -y
|
| 3 |
ffmpeg
|
pre-requirements.txt
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
pip>=23.0.0
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,13 +1,5 @@
|
|
| 1 |
-
stablepy==0.6.
|
| 2 |
-
torch==2.
|
| 3 |
-
diffusers
|
| 4 |
gdown
|
| 5 |
opencv-python
|
| 6 |
-
unidecode
|
| 7 |
-
pydantic==2.10.6
|
| 8 |
-
huggingface_hub
|
| 9 |
-
hf_transfer
|
| 10 |
-
hf_xet
|
| 11 |
-
spaces
|
| 12 |
-
gradio==5.44.1
|
| 13 |
-
matplotlib-inline
|
|
|
|
| 1 |
+
stablepy==0.6.0
|
| 2 |
+
torch==2.2.0
|
|
|
|
| 3 |
gdown
|
| 4 |
opencv-python
|
| 5 |
+
unidecode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
CHANGED
|
@@ -1,714 +1,485 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import re
|
| 3 |
-
import gradio as gr
|
| 4 |
-
from constants import (
|
| 5 |
-
DIFFUSERS_FORMAT_LORAS,
|
| 6 |
-
CIVITAI_API_KEY,
|
| 7 |
-
HF_TOKEN,
|
| 8 |
-
MODEL_TYPE_CLASS,
|
| 9 |
-
DIRECTORY_LORAS,
|
| 10 |
-
DIRECTORY_MODELS,
|
| 11 |
-
DIFFUSECRAFT_CHECKPOINT_NAME,
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
from huggingface_hub import
|
| 17 |
-
from diffusers import DiffusionPipeline
|
| 18 |
-
from huggingface_hub import model_info as model_info_data
|
| 19 |
-
from diffusers.pipelines.pipeline_loading_utils import variant_compatible_siblings
|
| 20 |
-
from stablepy.diffusers_vanilla.utils import checkpoint_model_type
|
| 21 |
-
from pathlib import PosixPath
|
| 22 |
-
from unidecode import unidecode
|
| 23 |
-
import urllib.parse
|
| 24 |
-
import copy
|
| 25 |
-
import requests
|
| 26 |
-
from requests.adapters import HTTPAdapter
|
| 27 |
-
from urllib3.util import Retry
|
| 28 |
-
import shutil
|
| 29 |
-
import subprocess
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
"
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
"
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
"
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
#
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
)
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
)
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
if
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
#
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
), gr.update(
|
| 487 |
-
choices=new_lora_model_list
|
| 488 |
-
), gr.update(
|
| 489 |
-
choices=new_lora_model_list
|
| 490 |
-
), gr.update(
|
| 491 |
-
choices=new_lora_model_list
|
| 492 |
-
), gr.update(
|
| 493 |
-
choices=new_lora_model_list
|
| 494 |
-
), gr.update(
|
| 495 |
-
value=msg_lora
|
| 496 |
-
)
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
def info_html(json_data, title, subtitle):
|
| 500 |
-
return f"""
|
| 501 |
-
<div style='padding: 0; border-radius: 10px;'>
|
| 502 |
-
<p style='margin: 0; font-weight: bold;'>{title}</p>
|
| 503 |
-
<details>
|
| 504 |
-
<summary>Details</summary>
|
| 505 |
-
<p style='margin: 0; font-weight: bold;'>{subtitle}</p>
|
| 506 |
-
</details>
|
| 507 |
-
</div>
|
| 508 |
-
"""
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
def get_model_type(repo_id: str):
|
| 512 |
-
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
|
| 513 |
-
default = "SD 1.5"
|
| 514 |
-
try:
|
| 515 |
-
if os.path.exists(repo_id):
|
| 516 |
-
tag, _, _, _ = checkpoint_model_type(repo_id)
|
| 517 |
-
return DIFFUSECRAFT_CHECKPOINT_NAME[tag]
|
| 518 |
-
else:
|
| 519 |
-
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
| 520 |
-
tags = model.tags
|
| 521 |
-
for tag in tags:
|
| 522 |
-
if tag in MODEL_TYPE_CLASS.keys():
|
| 523 |
-
return MODEL_TYPE_CLASS.get(tag, default)
|
| 524 |
-
|
| 525 |
-
except Exception:
|
| 526 |
-
return default
|
| 527 |
-
return default
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
def restart_space(repo_id: str, factory_reboot: bool):
|
| 531 |
-
api = HfApi(token=os.environ.get("HF_TOKEN"))
|
| 532 |
-
try:
|
| 533 |
-
runtime = api.get_space_runtime(repo_id=repo_id)
|
| 534 |
-
if runtime.stage == "RUNNING":
|
| 535 |
-
api.restart_space(repo_id=repo_id, factory_reboot=factory_reboot)
|
| 536 |
-
print(f"Restarting space: {repo_id}")
|
| 537 |
-
else:
|
| 538 |
-
print(f"Space {repo_id} is in stage: {runtime.stage}")
|
| 539 |
-
except Exception as e:
|
| 540 |
-
print(e)
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
def extract_exif_data(image):
|
| 544 |
-
if image is None:
|
| 545 |
-
return ""
|
| 546 |
-
|
| 547 |
-
try:
|
| 548 |
-
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
|
| 549 |
-
|
| 550 |
-
for key in metadata_keys:
|
| 551 |
-
if key in image.info:
|
| 552 |
-
return image.info[key]
|
| 553 |
-
|
| 554 |
-
return str(image.info)
|
| 555 |
-
|
| 556 |
-
except Exception as e:
|
| 557 |
-
return f"Error extracting metadata: {str(e)}"
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
def create_mask_now(img, invert):
|
| 561 |
-
import numpy as np
|
| 562 |
-
import time
|
| 563 |
-
|
| 564 |
-
time.sleep(0.5)
|
| 565 |
-
|
| 566 |
-
transparent_image = img["layers"][0]
|
| 567 |
-
|
| 568 |
-
# Extract the alpha channel
|
| 569 |
-
alpha_channel = np.array(transparent_image)[:, :, 3]
|
| 570 |
-
|
| 571 |
-
# Create a binary mask by thresholding the alpha channel
|
| 572 |
-
binary_mask = alpha_channel > 1
|
| 573 |
-
|
| 574 |
-
if invert:
|
| 575 |
-
print("Invert")
|
| 576 |
-
# Invert the binary mask so that the drawn shape is white and the rest is black
|
| 577 |
-
binary_mask = np.invert(binary_mask)
|
| 578 |
-
|
| 579 |
-
# Convert the binary mask to a 3-channel RGB mask
|
| 580 |
-
rgb_mask = np.stack((binary_mask,) * 3, axis=-1)
|
| 581 |
-
|
| 582 |
-
# Convert the mask to uint8
|
| 583 |
-
rgb_mask = rgb_mask.astype(np.uint8) * 255
|
| 584 |
-
|
| 585 |
-
return img["background"], rgb_mask
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
def download_diffuser_repo(repo_name: str, model_type: str, revision: str = "main", token=True):
|
| 589 |
-
|
| 590 |
-
variant = None
|
| 591 |
-
if token is True and not os.environ.get("HF_TOKEN"):
|
| 592 |
-
token = None
|
| 593 |
-
|
| 594 |
-
if model_type == "SDXL":
|
| 595 |
-
info = model_info_data(
|
| 596 |
-
repo_name,
|
| 597 |
-
token=token,
|
| 598 |
-
revision=revision,
|
| 599 |
-
timeout=5.0,
|
| 600 |
-
)
|
| 601 |
-
|
| 602 |
-
filenames = {sibling.rfilename for sibling in info.siblings}
|
| 603 |
-
model_filenames, variant_filenames = variant_compatible_siblings(
|
| 604 |
-
filenames, variant="fp16"
|
| 605 |
-
)
|
| 606 |
-
|
| 607 |
-
if len(variant_filenames):
|
| 608 |
-
variant = "fp16"
|
| 609 |
-
|
| 610 |
-
if model_type == "FLUX":
|
| 611 |
-
cached_folder = snapshot_download(
|
| 612 |
-
repo_id=repo_name,
|
| 613 |
-
allow_patterns="transformer/*"
|
| 614 |
-
)
|
| 615 |
-
else:
|
| 616 |
-
cached_folder = DiffusionPipeline.download(
|
| 617 |
-
pretrained_model_name=repo_name,
|
| 618 |
-
force_download=False,
|
| 619 |
-
token=token,
|
| 620 |
-
revision=revision,
|
| 621 |
-
# mirror="https://hf-mirror.com",
|
| 622 |
-
variant=variant,
|
| 623 |
-
use_safetensors=True,
|
| 624 |
-
trust_remote_code=False,
|
| 625 |
-
timeout=5.0,
|
| 626 |
-
)
|
| 627 |
-
|
| 628 |
-
if isinstance(cached_folder, PosixPath):
|
| 629 |
-
cached_folder = cached_folder.as_posix()
|
| 630 |
-
|
| 631 |
-
# Task model
|
| 632 |
-
# from huggingface_hub import hf_hub_download
|
| 633 |
-
# hf_hub_download(
|
| 634 |
-
# task_model,
|
| 635 |
-
# filename="diffusion_pytorch_model.safetensors", # fix fp16 variant
|
| 636 |
-
# )
|
| 637 |
-
|
| 638 |
-
return cached_folder
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
def get_folder_size_gb(folder_path):
|
| 642 |
-
result = subprocess.run(["du", "-s", folder_path], capture_output=True, text=True)
|
| 643 |
-
|
| 644 |
-
total_size_kb = int(result.stdout.split()[0])
|
| 645 |
-
total_size_gb = total_size_kb / (1024 ** 2)
|
| 646 |
-
|
| 647 |
-
return total_size_gb
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
def get_used_storage_gb(path_storage=STORAGE_ROOT):
|
| 651 |
-
try:
|
| 652 |
-
used_gb = get_folder_size_gb(path_storage)
|
| 653 |
-
print(f"Used Storage: {used_gb:.2f} GB")
|
| 654 |
-
except Exception as e:
|
| 655 |
-
used_gb = 999
|
| 656 |
-
print(f"Error while retrieving the used storage: {e}.")
|
| 657 |
-
|
| 658 |
-
return used_gb
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
def delete_model(removal_candidate):
|
| 662 |
-
print(f"Removing: {removal_candidate}")
|
| 663 |
-
|
| 664 |
-
if os.path.exists(removal_candidate):
|
| 665 |
-
os.remove(removal_candidate)
|
| 666 |
-
else:
|
| 667 |
-
diffusers_model = f"{CACHE_HF}{DIRECTORY_MODELS}--{removal_candidate.replace('/', '--')}"
|
| 668 |
-
if os.path.isdir(diffusers_model):
|
| 669 |
-
shutil.rmtree(diffusers_model)
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
def clear_hf_cache():
|
| 673 |
-
"""
|
| 674 |
-
Clears the entire Hugging Face cache at ~/.cache/huggingface.
|
| 675 |
-
Hugging Face will re-download models as needed later.
|
| 676 |
-
"""
|
| 677 |
-
try:
|
| 678 |
-
if os.path.exists(CACHE_HF):
|
| 679 |
-
shutil.rmtree(CACHE_HF, ignore_errors=True)
|
| 680 |
-
print(f"Hugging Face cache cleared: {CACHE_HF}")
|
| 681 |
-
else:
|
| 682 |
-
print(f"No Hugging Face cache found at: {CACHE_HF}")
|
| 683 |
-
except Exception as e:
|
| 684 |
-
print(f"Error clearing Hugging Face cache: {e}")
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
def progress_step_bar(step, total):
|
| 688 |
-
# Calculate the percentage for the progress bar width
|
| 689 |
-
percentage = min(100, ((step / total) * 100))
|
| 690 |
-
|
| 691 |
-
return f"""
|
| 692 |
-
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
|
| 693 |
-
<div style="width: {percentage}%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
|
| 694 |
-
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 13px;">
|
| 695 |
-
{int(percentage)}%
|
| 696 |
-
</div>
|
| 697 |
-
</div>
|
| 698 |
-
"""
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
def html_template_message(msg):
|
| 702 |
-
return f"""
|
| 703 |
-
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
|
| 704 |
-
<div style="width: 0%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
|
| 705 |
-
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 14px; font-weight: bold; text-shadow: 1px 1px 2px black;">
|
| 706 |
-
{msg}
|
| 707 |
-
</div>
|
| 708 |
-
</div>
|
| 709 |
-
"""
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
def escape_html(text):
|
| 713 |
-
"""Escapes HTML special characters in the input text."""
|
| 714 |
-
return text.replace("<", "<").replace(">", ">").replace("\n", "<br>")
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from constants import (
|
| 5 |
+
DIFFUSERS_FORMAT_LORAS,
|
| 6 |
+
CIVITAI_API_KEY,
|
| 7 |
+
HF_TOKEN,
|
| 8 |
+
MODEL_TYPE_CLASS,
|
| 9 |
+
DIRECTORY_LORAS,
|
| 10 |
+
DIRECTORY_MODELS,
|
| 11 |
+
DIFFUSECRAFT_CHECKPOINT_NAME,
|
| 12 |
+
CACHE_HF,
|
| 13 |
+
STORAGE_ROOT,
|
| 14 |
+
)
|
| 15 |
+
from huggingface_hub import HfApi
|
| 16 |
+
from huggingface_hub import snapshot_download
|
| 17 |
+
from diffusers import DiffusionPipeline
|
| 18 |
+
from huggingface_hub import model_info as model_info_data
|
| 19 |
+
from diffusers.pipelines.pipeline_loading_utils import variant_compatible_siblings
|
| 20 |
+
from stablepy.diffusers_vanilla.utils import checkpoint_model_type
|
| 21 |
+
from pathlib import PosixPath
|
| 22 |
+
from unidecode import unidecode
|
| 23 |
+
import urllib.parse
|
| 24 |
+
import copy
|
| 25 |
+
import requests
|
| 26 |
+
from requests.adapters import HTTPAdapter
|
| 27 |
+
from urllib3.util import Retry
|
| 28 |
+
import shutil
|
| 29 |
+
import subprocess
|
| 30 |
+
|
| 31 |
+
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def request_json_data(url):
|
| 35 |
+
model_version_id = url.split('/')[-1]
|
| 36 |
+
if "?modelVersionId=" in model_version_id:
|
| 37 |
+
match = re.search(r'modelVersionId=(\d+)', url)
|
| 38 |
+
model_version_id = match.group(1)
|
| 39 |
+
|
| 40 |
+
endpoint_url = f"https://civitai.com/api/v1/model-versions/{model_version_id}"
|
| 41 |
+
|
| 42 |
+
params = {}
|
| 43 |
+
headers = {'User-Agent': USER_AGENT, 'content-type': 'application/json'}
|
| 44 |
+
session = requests.Session()
|
| 45 |
+
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
| 46 |
+
session.mount("https://", HTTPAdapter(max_retries=retries))
|
| 47 |
+
|
| 48 |
+
try:
|
| 49 |
+
result = session.get(endpoint_url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
|
| 50 |
+
result.raise_for_status()
|
| 51 |
+
json_data = result.json()
|
| 52 |
+
return json_data if json_data else None
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"Error: {e}")
|
| 55 |
+
return None
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class ModelInformation:
|
| 59 |
+
def __init__(self, json_data):
|
| 60 |
+
self.model_version_id = json_data.get("id", "")
|
| 61 |
+
self.model_id = json_data.get("modelId", "")
|
| 62 |
+
self.download_url = json_data.get("downloadUrl", "")
|
| 63 |
+
self.model_url = f"https://civitai.com/models/{self.model_id}?modelVersionId={self.model_version_id}"
|
| 64 |
+
self.filename_url = next(
|
| 65 |
+
(v.get("name", "") for v in json_data.get("files", []) if str(self.model_version_id) in v.get("downloadUrl", "") and v.get("type", "Model") == "Model"), ""
|
| 66 |
+
)
|
| 67 |
+
self.filename_url = self.filename_url if self.filename_url else ""
|
| 68 |
+
self.description = json_data.get("description", "")
|
| 69 |
+
if self.description is None: self.description = ""
|
| 70 |
+
self.model_name = json_data.get("model", {}).get("name", "")
|
| 71 |
+
self.model_type = json_data.get("model", {}).get("type", "")
|
| 72 |
+
self.nsfw = json_data.get("model", {}).get("nsfw", False)
|
| 73 |
+
self.poi = json_data.get("model", {}).get("poi", False)
|
| 74 |
+
self.images = [img.get("url", "") for img in json_data.get("images", [])]
|
| 75 |
+
self.example_prompt = json_data.get("trainedWords", [""])[0] if json_data.get("trainedWords") else ""
|
| 76 |
+
self.original_json = copy.deepcopy(json_data)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def retrieve_model_info(url):
|
| 80 |
+
json_data = request_json_data(url)
|
| 81 |
+
if not json_data:
|
| 82 |
+
return None
|
| 83 |
+
model_descriptor = ModelInformation(json_data)
|
| 84 |
+
return model_descriptor
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def download_things(directory, url, hf_token="", civitai_api_key="", romanize=False):
|
| 88 |
+
url = url.strip()
|
| 89 |
+
downloaded_file_path = None
|
| 90 |
+
|
| 91 |
+
if "drive.google.com" in url:
|
| 92 |
+
original_dir = os.getcwd()
|
| 93 |
+
os.chdir(directory)
|
| 94 |
+
os.system(f"gdown --fuzzy {url}")
|
| 95 |
+
os.chdir(original_dir)
|
| 96 |
+
elif "huggingface.co" in url:
|
| 97 |
+
url = url.replace("?download=true", "")
|
| 98 |
+
# url = urllib.parse.quote(url, safe=':/') # fix encoding
|
| 99 |
+
if "/blob/" in url:
|
| 100 |
+
url = url.replace("/blob/", "/resolve/")
|
| 101 |
+
user_header = f'"Authorization: Bearer {hf_token}"'
|
| 102 |
+
|
| 103 |
+
filename = unidecode(url.split('/')[-1]) if romanize else url.split('/')[-1]
|
| 104 |
+
|
| 105 |
+
if hf_token:
|
| 106 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}")
|
| 107 |
+
else:
|
| 108 |
+
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}")
|
| 109 |
+
|
| 110 |
+
downloaded_file_path = os.path.join(directory, filename)
|
| 111 |
+
|
| 112 |
+
elif "civitai.com" in url:
|
| 113 |
+
|
| 114 |
+
if not civitai_api_key:
|
| 115 |
+
print("\033[91mYou need an API key to download Civitai models.\033[0m")
|
| 116 |
+
|
| 117 |
+
model_profile = retrieve_model_info(url)
|
| 118 |
+
if (
|
| 119 |
+
model_profile is not None
|
| 120 |
+
and model_profile.download_url
|
| 121 |
+
and model_profile.filename_url
|
| 122 |
+
):
|
| 123 |
+
url = model_profile.download_url
|
| 124 |
+
filename = unidecode(model_profile.filename_url) if romanize else model_profile.filename_url
|
| 125 |
+
else:
|
| 126 |
+
if "?" in url:
|
| 127 |
+
url = url.split("?")[0]
|
| 128 |
+
filename = ""
|
| 129 |
+
|
| 130 |
+
url_dl = url + f"?token={civitai_api_key}"
|
| 131 |
+
print(f"Filename: {filename}")
|
| 132 |
+
|
| 133 |
+
param_filename = ""
|
| 134 |
+
if filename:
|
| 135 |
+
param_filename = f"-o '{filename}'"
|
| 136 |
+
|
| 137 |
+
aria2_command = (
|
| 138 |
+
f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 '
|
| 139 |
+
f'-k 1M -s 16 -d "{directory}" {param_filename} "{url_dl}"'
|
| 140 |
+
)
|
| 141 |
+
os.system(aria2_command)
|
| 142 |
+
|
| 143 |
+
if param_filename and os.path.exists(os.path.join(directory, filename)):
|
| 144 |
+
downloaded_file_path = os.path.join(directory, filename)
|
| 145 |
+
|
| 146 |
+
# # PLAN B
|
| 147 |
+
# # Follow the redirect to get the actual download URL
|
| 148 |
+
# curl_command = (
|
| 149 |
+
# f'curl -L -sI --connect-timeout 5 --max-time 5 '
|
| 150 |
+
# f'-H "Content-Type: application/json" '
|
| 151 |
+
# f'-H "Authorization: Bearer {civitai_api_key}" "{url}"'
|
| 152 |
+
# )
|
| 153 |
+
|
| 154 |
+
# headers = os.popen(curl_command).read()
|
| 155 |
+
|
| 156 |
+
# # Look for the redirected "Location" URL
|
| 157 |
+
# location_match = re.search(r'location: (.+)', headers, re.IGNORECASE)
|
| 158 |
+
|
| 159 |
+
# if location_match:
|
| 160 |
+
# redirect_url = location_match.group(1).strip()
|
| 161 |
+
|
| 162 |
+
# # Extract the filename from the redirect URL's "Content-Disposition"
|
| 163 |
+
# filename_match = re.search(r'filename%3D%22(.+?)%22', redirect_url)
|
| 164 |
+
# if filename_match:
|
| 165 |
+
# encoded_filename = filename_match.group(1)
|
| 166 |
+
# # Decode the URL-encoded filename
|
| 167 |
+
# decoded_filename = urllib.parse.unquote(encoded_filename)
|
| 168 |
+
|
| 169 |
+
# filename = unidecode(decoded_filename) if romanize else decoded_filename
|
| 170 |
+
# print(f"Filename: {filename}")
|
| 171 |
+
|
| 172 |
+
# aria2_command = (
|
| 173 |
+
# f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 '
|
| 174 |
+
# f'-k 1M -s 16 -d "{directory}" -o "{filename}" "{redirect_url}"'
|
| 175 |
+
# )
|
| 176 |
+
# return_code = os.system(aria2_command)
|
| 177 |
+
|
| 178 |
+
# # if return_code != 0:
|
| 179 |
+
# # raise RuntimeError(f"Failed to download file: {filename}. Error code: {return_code}")
|
| 180 |
+
# downloaded_file_path = os.path.join(directory, filename)
|
| 181 |
+
# if not os.path.exists(downloaded_file_path):
|
| 182 |
+
# downloaded_file_path = None
|
| 183 |
+
|
| 184 |
+
# if not downloaded_file_path:
|
| 185 |
+
# # Old method
|
| 186 |
+
# if "?" in url:
|
| 187 |
+
# url = url.split("?")[0]
|
| 188 |
+
# url = url + f"?token={civitai_api_key}"
|
| 189 |
+
# os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
| 190 |
+
|
| 191 |
+
else:
|
| 192 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
| 193 |
+
|
| 194 |
+
return downloaded_file_path
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def get_model_list(directory_path):
|
| 198 |
+
model_list = []
|
| 199 |
+
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
| 200 |
+
|
| 201 |
+
for filename in os.listdir(directory_path):
|
| 202 |
+
if os.path.splitext(filename)[1] in valid_extensions:
|
| 203 |
+
# name_without_extension = os.path.splitext(filename)[0]
|
| 204 |
+
file_path = os.path.join(directory_path, filename)
|
| 205 |
+
# model_list.append((name_without_extension, file_path))
|
| 206 |
+
model_list.append(file_path)
|
| 207 |
+
print('\033[34mFILE: ' + file_path + '\033[0m')
|
| 208 |
+
return model_list
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def extract_parameters(input_string):
|
| 212 |
+
parameters = {}
|
| 213 |
+
input_string = input_string.replace("\n", "")
|
| 214 |
+
|
| 215 |
+
if "Negative prompt:" not in input_string:
|
| 216 |
+
if "Steps:" in input_string:
|
| 217 |
+
input_string = input_string.replace("Steps:", "Negative prompt: Steps:")
|
| 218 |
+
else:
|
| 219 |
+
print("Invalid metadata")
|
| 220 |
+
parameters["prompt"] = input_string
|
| 221 |
+
return parameters
|
| 222 |
+
|
| 223 |
+
parm = input_string.split("Negative prompt:")
|
| 224 |
+
parameters["prompt"] = parm[0].strip()
|
| 225 |
+
if "Steps:" not in parm[1]:
|
| 226 |
+
print("Steps not detected")
|
| 227 |
+
parameters["neg_prompt"] = parm[1].strip()
|
| 228 |
+
return parameters
|
| 229 |
+
parm = parm[1].split("Steps:")
|
| 230 |
+
parameters["neg_prompt"] = parm[0].strip()
|
| 231 |
+
input_string = "Steps:" + parm[1]
|
| 232 |
+
|
| 233 |
+
# Extracting Steps
|
| 234 |
+
steps_match = re.search(r'Steps: (\d+)', input_string)
|
| 235 |
+
if steps_match:
|
| 236 |
+
parameters['Steps'] = int(steps_match.group(1))
|
| 237 |
+
|
| 238 |
+
# Extracting Size
|
| 239 |
+
size_match = re.search(r'Size: (\d+x\d+)', input_string)
|
| 240 |
+
if size_match:
|
| 241 |
+
parameters['Size'] = size_match.group(1)
|
| 242 |
+
width, height = map(int, parameters['Size'].split('x'))
|
| 243 |
+
parameters['width'] = width
|
| 244 |
+
parameters['height'] = height
|
| 245 |
+
|
| 246 |
+
# Extracting other parameters
|
| 247 |
+
other_parameters = re.findall(r'([^,:]+): (.*?)(?=, [^,:]+:|$)', input_string)
|
| 248 |
+
for param in other_parameters:
|
| 249 |
+
parameters[param[0].strip()] = param[1].strip('"')
|
| 250 |
+
|
| 251 |
+
return parameters
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def get_my_lora(link_url, romanize):
|
| 255 |
+
l_name = ""
|
| 256 |
+
for url in [url.strip() for url in link_url.split(',')]:
|
| 257 |
+
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
| 258 |
+
l_name = download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY, romanize)
|
| 259 |
+
new_lora_model_list = get_model_list(DIRECTORY_LORAS)
|
| 260 |
+
new_lora_model_list.insert(0, "None")
|
| 261 |
+
new_lora_model_list = new_lora_model_list + DIFFUSERS_FORMAT_LORAS
|
| 262 |
+
msg_lora = "Downloaded"
|
| 263 |
+
if l_name:
|
| 264 |
+
msg_lora += f": <b>{l_name}</b>"
|
| 265 |
+
print(msg_lora)
|
| 266 |
+
|
| 267 |
+
return gr.update(
|
| 268 |
+
choices=new_lora_model_list
|
| 269 |
+
), gr.update(
|
| 270 |
+
choices=new_lora_model_list
|
| 271 |
+
), gr.update(
|
| 272 |
+
choices=new_lora_model_list
|
| 273 |
+
), gr.update(
|
| 274 |
+
choices=new_lora_model_list
|
| 275 |
+
), gr.update(
|
| 276 |
+
choices=new_lora_model_list
|
| 277 |
+
), gr.update(
|
| 278 |
+
choices=new_lora_model_list
|
| 279 |
+
), gr.update(
|
| 280 |
+
choices=new_lora_model_list
|
| 281 |
+
), gr.update(
|
| 282 |
+
value=msg_lora
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def info_html(json_data, title, subtitle):
|
| 287 |
+
return f"""
|
| 288 |
+
<div style='padding: 0; border-radius: 10px;'>
|
| 289 |
+
<p style='margin: 0; font-weight: bold;'>{title}</p>
|
| 290 |
+
<details>
|
| 291 |
+
<summary>Details</summary>
|
| 292 |
+
<p style='margin: 0; font-weight: bold;'>{subtitle}</p>
|
| 293 |
+
</details>
|
| 294 |
+
</div>
|
| 295 |
+
"""
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def get_model_type(repo_id: str):
|
| 299 |
+
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
|
| 300 |
+
default = "SD 1.5"
|
| 301 |
+
try:
|
| 302 |
+
if os.path.exists(repo_id):
|
| 303 |
+
tag, _, _, _ = checkpoint_model_type(repo_id)
|
| 304 |
+
return DIFFUSECRAFT_CHECKPOINT_NAME[tag]
|
| 305 |
+
else:
|
| 306 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
| 307 |
+
tags = model.tags
|
| 308 |
+
for tag in tags:
|
| 309 |
+
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
| 310 |
+
|
| 311 |
+
except Exception:
|
| 312 |
+
return default
|
| 313 |
+
return default
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def restart_space(repo_id: str, factory_reboot: bool):
|
| 317 |
+
api = HfApi(token=os.environ.get("HF_TOKEN"))
|
| 318 |
+
try:
|
| 319 |
+
runtime = api.get_space_runtime(repo_id=repo_id)
|
| 320 |
+
if runtime.stage == "RUNNING":
|
| 321 |
+
api.restart_space(repo_id=repo_id, factory_reboot=factory_reboot)
|
| 322 |
+
print(f"Restarting space: {repo_id}")
|
| 323 |
+
else:
|
| 324 |
+
print(f"Space {repo_id} is in stage: {runtime.stage}")
|
| 325 |
+
except Exception as e:
|
| 326 |
+
print(e)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def extract_exif_data(image):
|
| 330 |
+
if image is None:
|
| 331 |
+
return ""
|
| 332 |
+
|
| 333 |
+
try:
|
| 334 |
+
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
|
| 335 |
+
|
| 336 |
+
for key in metadata_keys:
|
| 337 |
+
if key in image.info:
|
| 338 |
+
return image.info[key]
|
| 339 |
+
|
| 340 |
+
return str(image.info)
|
| 341 |
+
|
| 342 |
+
except Exception as e:
|
| 343 |
+
return f"Error extracting metadata: {str(e)}"
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def create_mask_now(img, invert):
|
| 347 |
+
import numpy as np
|
| 348 |
+
import time
|
| 349 |
+
|
| 350 |
+
time.sleep(0.5)
|
| 351 |
+
|
| 352 |
+
transparent_image = img["layers"][0]
|
| 353 |
+
|
| 354 |
+
# Extract the alpha channel
|
| 355 |
+
alpha_channel = np.array(transparent_image)[:, :, 3]
|
| 356 |
+
|
| 357 |
+
# Create a binary mask by thresholding the alpha channel
|
| 358 |
+
binary_mask = alpha_channel > 1
|
| 359 |
+
|
| 360 |
+
if invert:
|
| 361 |
+
print("Invert")
|
| 362 |
+
# Invert the binary mask so that the drawn shape is white and the rest is black
|
| 363 |
+
binary_mask = np.invert(binary_mask)
|
| 364 |
+
|
| 365 |
+
# Convert the binary mask to a 3-channel RGB mask
|
| 366 |
+
rgb_mask = np.stack((binary_mask,) * 3, axis=-1)
|
| 367 |
+
|
| 368 |
+
# Convert the mask to uint8
|
| 369 |
+
rgb_mask = rgb_mask.astype(np.uint8) * 255
|
| 370 |
+
|
| 371 |
+
return img["background"], rgb_mask
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
def download_diffuser_repo(repo_name: str, model_type: str, revision: str = "main", token=True):
|
| 375 |
+
|
| 376 |
+
variant = None
|
| 377 |
+
if token is True and not os.environ.get("HF_TOKEN"):
|
| 378 |
+
token = None
|
| 379 |
+
|
| 380 |
+
if model_type == "SDXL":
|
| 381 |
+
info = model_info_data(
|
| 382 |
+
repo_name,
|
| 383 |
+
token=token,
|
| 384 |
+
revision=revision,
|
| 385 |
+
timeout=5.0,
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
filenames = {sibling.rfilename for sibling in info.siblings}
|
| 389 |
+
model_filenames, variant_filenames = variant_compatible_siblings(
|
| 390 |
+
filenames, variant="fp16"
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
if len(variant_filenames):
|
| 394 |
+
variant = "fp16"
|
| 395 |
+
|
| 396 |
+
if model_type == "FLUX":
|
| 397 |
+
cached_folder = snapshot_download(
|
| 398 |
+
repo_id=repo_name,
|
| 399 |
+
allow_patterns="transformer/*"
|
| 400 |
+
)
|
| 401 |
+
else:
|
| 402 |
+
cached_folder = DiffusionPipeline.download(
|
| 403 |
+
pretrained_model_name=repo_name,
|
| 404 |
+
force_download=False,
|
| 405 |
+
token=token,
|
| 406 |
+
revision=revision,
|
| 407 |
+
# mirror="https://hf-mirror.com",
|
| 408 |
+
variant=variant,
|
| 409 |
+
use_safetensors=True,
|
| 410 |
+
trust_remote_code=False,
|
| 411 |
+
timeout=5.0,
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
if isinstance(cached_folder, PosixPath):
|
| 415 |
+
cached_folder = cached_folder.as_posix()
|
| 416 |
+
|
| 417 |
+
# Task model
|
| 418 |
+
# from huggingface_hub import hf_hub_download
|
| 419 |
+
# hf_hub_download(
|
| 420 |
+
# task_model,
|
| 421 |
+
# filename="diffusion_pytorch_model.safetensors", # fix fp16 variant
|
| 422 |
+
# )
|
| 423 |
+
|
| 424 |
+
return cached_folder
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def get_folder_size_gb(folder_path):
|
| 428 |
+
result = subprocess.run(["du", "-s", folder_path], capture_output=True, text=True)
|
| 429 |
+
|
| 430 |
+
total_size_kb = int(result.stdout.split()[0])
|
| 431 |
+
total_size_gb = total_size_kb / (1024 ** 2)
|
| 432 |
+
|
| 433 |
+
return total_size_gb
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
def get_used_storage_gb():
|
| 437 |
+
try:
|
| 438 |
+
used_gb = get_folder_size_gb(STORAGE_ROOT)
|
| 439 |
+
print(f"Used Storage: {used_gb:.2f} GB")
|
| 440 |
+
except Exception as e:
|
| 441 |
+
used_gb = 999
|
| 442 |
+
print(f"Error while retrieving the used storage: {e}.")
|
| 443 |
+
|
| 444 |
+
return used_gb
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def delete_model(removal_candidate):
|
| 448 |
+
print(f"Removing: {removal_candidate}")
|
| 449 |
+
|
| 450 |
+
if os.path.exists(removal_candidate):
|
| 451 |
+
os.remove(removal_candidate)
|
| 452 |
+
else:
|
| 453 |
+
diffusers_model = f"{CACHE_HF}{DIRECTORY_MODELS}--{removal_candidate.replace('/', '--')}"
|
| 454 |
+
if os.path.isdir(diffusers_model):
|
| 455 |
+
shutil.rmtree(diffusers_model)
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
def progress_step_bar(step, total):
|
| 459 |
+
# Calculate the percentage for the progress bar width
|
| 460 |
+
percentage = min(100, ((step / total) * 100))
|
| 461 |
+
|
| 462 |
+
return f"""
|
| 463 |
+
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
|
| 464 |
+
<div style="width: {percentage}%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
|
| 465 |
+
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 13px;">
|
| 466 |
+
{int(percentage)}%
|
| 467 |
+
</div>
|
| 468 |
+
</div>
|
| 469 |
+
"""
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
def html_template_message(msg):
|
| 473 |
+
return f"""
|
| 474 |
+
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
|
| 475 |
+
<div style="width: 0%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
|
| 476 |
+
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 14px; font-weight: bold; text-shadow: 1px 1px 2px black;">
|
| 477 |
+
{msg}
|
| 478 |
+
</div>
|
| 479 |
+
</div>
|
| 480 |
+
"""
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
def escape_html(text):
|
| 484 |
+
"""Escapes HTML special characters in the input text."""
|
| 485 |
+
return text.replace("<", "<").replace(">", ">").replace("\n", "<br>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|