seanpedrickcase's picture
Sync: Removed another s3 key, and unnecessary xlsx save print statement. Formatter check.
2cad7c3
import os
import shutil
import subprocess
import sys
import tempfile
import time
import unittest
from typing import List, Optional
# Mock LLM calls are automatically applied via environment variables
# No need to import - the mock patches are applied when USE_MOCK_LLM=1 is set
def run_cli_topics(
script_path: str,
task: str,
output_dir: str,
input_file: Optional[str] = None,
text_column: Optional[str] = None,
previous_output_files: Optional[List[str]] = None,
timeout: int = 600, # 10-minute timeout
# General Arguments
username: Optional[str] = None,
save_to_user_folders: Optional[bool] = None,
excel_sheets: Optional[List[str]] = None,
group_by: Optional[str] = None,
# Model Configuration
model_choice: Optional[str] = None,
temperature: Optional[float] = None,
batch_size: Optional[int] = None,
max_tokens: Optional[int] = None,
api_url: Optional[str] = None,
inference_server_model: Optional[str] = None,
# Topic Extraction Arguments
context: Optional[str] = None,
candidate_topics: Optional[str] = None,
force_zero_shot: Optional[str] = None,
force_single_topic: Optional[str] = None,
produce_structured_summary: Optional[str] = None,
sentiment: Optional[str] = None,
additional_summary_instructions: Optional[str] = None,
# Validation Arguments
additional_validation_issues: Optional[str] = None,
show_previous_table: Optional[str] = None,
output_debug_files: Optional[str] = None,
max_time_for_loop: Optional[int] = None,
# Deduplication Arguments
method: Optional[str] = None,
similarity_threshold: Optional[int] = None,
merge_sentiment: Optional[str] = None,
merge_general_topics: Optional[str] = None,
# Summarisation Arguments
summary_format: Optional[str] = None,
sample_reference_table: Optional[str] = None,
no_of_sampled_summaries: Optional[int] = None,
random_seed: Optional[int] = None,
# Output Format Arguments
create_xlsx_output: Optional[bool] = None,
# Logging Arguments
save_logs_to_csv: Optional[bool] = None,
save_logs_to_dynamodb: Optional[bool] = None,
cost_code: Optional[str] = None,
) -> bool:
"""
Executes the cli_topics.py script with specified arguments using a subprocess.
Args:
script_path (str): The path to the cli_topics.py script.
task (str): The main task to perform ('extract', 'validate', 'deduplicate', 'summarise', 'overall_summary', or 'all_in_one').
output_dir (str): The path to the directory for output files.
input_file (str, optional): Path to the input file to process.
text_column (str, optional): Name of the text column to process.
previous_output_files (List[str], optional): Path(s) to previous output files.
timeout (int): Timeout in seconds for the subprocess.
All other arguments match the CLI arguments from cli_topics.py.
Returns:
bool: True if the script executed successfully, False otherwise.
"""
# 1. Get absolute paths and perform pre-checks
script_abs_path = os.path.abspath(script_path)
output_abs_dir = os.path.abspath(output_dir)
# Handle input file based on task
if task in ["extract", "validate", "all_in_one"] and input_file is None:
raise ValueError(f"Input file is required for '{task}' task")
if input_file:
input_abs_path = os.path.abspath(input_file)
if not os.path.isfile(input_abs_path):
raise FileNotFoundError(f"Input file not found: {input_abs_path}")
if not os.path.isfile(script_abs_path):
raise FileNotFoundError(f"Script not found: {script_abs_path}")
if not os.path.isdir(output_abs_dir):
# Create the output directory if it doesn't exist
print(f"Output directory not found. Creating: {output_abs_dir}")
os.makedirs(output_abs_dir)
script_folder = os.path.dirname(script_abs_path)
# 2. Dynamically build the command list
command = [
"python",
script_abs_path,
"--output_dir",
output_abs_dir,
"--task",
task,
]
# Add input_file only if it's not None
if input_file:
command.extend(["--input_file", input_abs_path])
# Add general arguments
if text_column:
command.extend(["--text_column", text_column])
if previous_output_files:
command.extend(["--previous_output_files"] + previous_output_files)
if username:
command.extend(["--username", username])
if save_to_user_folders is not None:
command.extend(["--save_to_user_folders", str(save_to_user_folders)])
if excel_sheets:
command.append("--excel_sheets")
command.extend(excel_sheets)
if group_by:
command.extend(["--group_by", group_by])
# Add model configuration arguments
if model_choice:
command.extend(["--model_choice", model_choice])
if temperature is not None:
command.extend(["--temperature", str(temperature)])
if batch_size is not None:
command.extend(["--batch_size", str(batch_size)])
if max_tokens is not None:
command.extend(["--max_tokens", str(max_tokens)])
if api_url:
command.extend(["--api_url", api_url])
if inference_server_model:
command.extend(["--inference_server_model", inference_server_model])
# Add topic extraction arguments
if context:
command.extend(["--context", context])
if candidate_topics:
command.extend(["--candidate_topics", candidate_topics])
if force_zero_shot:
command.extend(["--force_zero_shot", force_zero_shot])
if force_single_topic:
command.extend(["--force_single_topic", force_single_topic])
if produce_structured_summary:
command.extend(["--produce_structured_summary", produce_structured_summary])
if sentiment:
command.extend(["--sentiment", sentiment])
if additional_summary_instructions:
command.extend(
["--additional_summary_instructions", additional_summary_instructions]
)
# Add validation arguments
if additional_validation_issues:
command.extend(["--additional_validation_issues", additional_validation_issues])
if show_previous_table:
command.extend(["--show_previous_table", show_previous_table])
if output_debug_files:
command.extend(["--output_debug_files", output_debug_files])
if max_time_for_loop is not None:
command.extend(["--max_time_for_loop", str(max_time_for_loop)])
# Add deduplication arguments
if method:
command.extend(["--method", method])
if similarity_threshold is not None:
command.extend(["--similarity_threshold", str(similarity_threshold)])
if merge_sentiment:
command.extend(["--merge_sentiment", merge_sentiment])
if merge_general_topics:
command.extend(["--merge_general_topics", merge_general_topics])
# Add summarisation arguments
if summary_format:
command.extend(["--summary_format", summary_format])
if sample_reference_table:
command.extend(["--sample_reference_table", sample_reference_table])
if no_of_sampled_summaries is not None:
command.extend(["--no_of_sampled_summaries", str(no_of_sampled_summaries)])
if random_seed is not None:
command.extend(["--random_seed", str(random_seed)])
# Add output format arguments
if create_xlsx_output is False:
command.append("--no_xlsx_output")
# Add logging arguments
if save_logs_to_csv is not None:
command.extend(["--save_logs_to_csv", str(save_logs_to_csv)])
if save_logs_to_dynamodb is not None:
command.extend(["--save_logs_to_dynamodb", str(save_logs_to_dynamodb)])
if cost_code:
command.extend(["--cost_code", cost_code])
# Filter out None values before joining
command_str = " ".join(str(arg) for arg in command if arg is not None)
print(f"Executing command: {command_str}")
# 3. Execute the command using subprocess
try:
# Use unbuffered output to avoid hanging
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
# Ensure inference server is enabled for testing
env["RUN_INFERENCE_SERVER"] = "1"
# Enable mock mode
env["USE_MOCK_LLM"] = "1"
env["TEST_MODE"] = "1"
result = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, # Combine stderr with stdout to avoid deadlocks
text=True,
cwd=script_folder, # Important for relative paths within the script
env=env,
bufsize=0, # Unbuffered
)
# Read output in real-time to avoid deadlocks
start_time = time.time()
# For Windows, we need a different approach
if sys.platform == "win32":
# On Windows, use communicate with timeout
try:
stdout, stderr = result.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
result.kill()
stdout, stderr = result.communicate()
raise subprocess.TimeoutExpired(result.args, timeout)
else:
# On Unix, we can use select for real-time reading
import select
stdout_lines = []
while result.poll() is None:
ready, _, _ = select.select([result.stdout], [], [], 0.1)
if ready:
line = result.stdout.readline()
if line:
print(line.rstrip(), flush=True)
stdout_lines.append(line)
# Check timeout
if time.time() - start_time > timeout:
result.kill()
raise subprocess.TimeoutExpired(result.args, timeout)
# Read remaining output
remaining = result.stdout.read()
if remaining:
print(remaining, end="", flush=True)
stdout_lines.append(remaining)
stdout = "".join(stdout_lines)
stderr = "" # Combined with stdout
print("--- SCRIPT STDOUT ---")
if stdout:
print(stdout)
print("--- SCRIPT STDERR ---")
if stderr:
print(stderr)
print("---------------------")
# Analyze the output for errors and success indicators
analysis = analyze_test_output(stdout, stderr)
if analysis["has_errors"]:
print("❌ Errors detected in output:")
for i, error_type in enumerate(analysis["error_types"]):
print(f" {i+1}. {error_type}")
if analysis["error_messages"]:
print(" Error messages:")
for msg in analysis["error_messages"][
:3
]: # Show first 3 error messages
print(f" - {msg}")
return False
elif result.returncode == 0:
success_msg = "βœ… Script executed successfully."
if analysis["success_indicators"]:
success_msg += f" (Success indicators: {', '.join(analysis['success_indicators'][:3])})"
print(success_msg)
return True
else:
print(f"❌ Command failed with return code {result.returncode}")
return False
except subprocess.TimeoutExpired:
result.kill()
print(f"❌ Subprocess timed out after {timeout} seconds.")
return False
except Exception as e:
print(f"❌ An unexpected error occurred: {e}")
return False
def analyze_test_output(stdout: str, stderr: str) -> dict:
"""
Analyze test output to provide detailed error information.
Args:
stdout (str): Standard output from the test
stderr (str): Standard error from the test
Returns:
dict: Analysis results with error details
"""
combined_output = (stdout or "") + (stderr or "")
analysis = {
"has_errors": False,
"error_types": [],
"error_messages": [],
"success_indicators": [],
"warning_indicators": [],
}
# Error patterns
error_patterns = {
"An error occurred": "General error message",
"Error:": "Error prefix",
"Exception:": "Exception occurred",
"Traceback": "Python traceback",
"Failed to": "Operation failure",
"Cannot": "Operation not possible",
"Unable to": "Operation not possible",
"KeyError:": "Missing key/dictionary error",
"AttributeError:": "Missing attribute error",
"TypeError:": "Type mismatch error",
"ValueError:": "Invalid value error",
"FileNotFoundError:": "File not found",
"ImportError:": "Import failure",
"ModuleNotFoundError:": "Module not found",
}
# Success indicators
success_patterns = [
"Successfully",
"Completed",
"Finished",
"Processed",
"Complete",
"Output files saved",
]
# Warning indicators
warning_patterns = ["Warning:", "WARNING:", "Deprecated", "DeprecationWarning"]
# Check for errors
for pattern, description in error_patterns.items():
if pattern.lower() in combined_output.lower():
analysis["has_errors"] = True
analysis["error_types"].append(description)
# Extract the actual error message
lines = combined_output.split("\n")
for line in lines:
if pattern.lower() in line.lower():
analysis["error_messages"].append(line.strip())
# Check for success indicators
for pattern in success_patterns:
if pattern.lower() in combined_output.lower():
analysis["success_indicators"].append(pattern)
# Check for warnings
for pattern in warning_patterns:
if pattern.lower() in combined_output.lower():
analysis["warning_indicators"].append(pattern)
return analysis
def run_app_direct_mode(
app_path: str,
task: str,
output_dir: str,
input_file: Optional[str] = None,
text_column: Optional[str] = None,
previous_output_files: Optional[List[str]] = None,
timeout: int = 600,
# General Arguments
username: Optional[str] = None,
save_to_user_folders: Optional[bool] = None,
excel_sheets: Optional[List[str]] = None,
group_by: Optional[str] = None,
# Model Configuration
model_choice: Optional[str] = None,
temperature: Optional[float] = None,
batch_size: Optional[int] = None,
max_tokens: Optional[int] = None,
api_url: Optional[str] = None,
inference_server_model: Optional[str] = None,
# Topic Extraction Arguments
context: Optional[str] = None,
candidate_topics: Optional[str] = None,
force_zero_shot: Optional[str] = None,
force_single_topic: Optional[str] = None,
produce_structured_summary: Optional[str] = None,
sentiment: Optional[str] = None,
additional_summary_instructions: Optional[str] = None,
# Validation Arguments
additional_validation_issues: Optional[str] = None,
show_previous_table: Optional[str] = None,
output_debug_files: Optional[str] = None,
max_time_for_loop: Optional[int] = None,
# Deduplication Arguments
method: Optional[str] = None,
similarity_threshold: Optional[int] = None,
merge_sentiment: Optional[str] = None,
merge_general_topics: Optional[str] = None,
# Summarisation Arguments
summary_format: Optional[str] = None,
sample_reference_table: Optional[str] = None,
no_of_sampled_summaries: Optional[int] = None,
random_seed: Optional[int] = None,
# Output Format Arguments
create_xlsx_output: Optional[bool] = None,
# Logging Arguments
save_logs_to_csv: Optional[bool] = None,
save_logs_to_dynamodb: Optional[bool] = None,
cost_code: Optional[str] = None,
) -> bool:
"""
Executes the app.py script in direct mode with specified environment variables.
Args:
app_path (str): The path to the app.py script.
task (str): The main task to perform ('extract', 'validate', 'deduplicate', 'summarise', 'overall_summary', or 'all_in_one').
output_dir (str): The path to the directory for output files.
input_file (str, optional): Path to the input file to process.
text_column (str, optional): Name of the text column to process.
previous_output_files (List[str], optional): Path(s) to previous output files.
timeout (int): Timeout in seconds for the subprocess.
All other arguments match the CLI arguments from cli_topics.py, but are set as environment variables.
Returns:
bool: True if the script executed successfully, False otherwise.
"""
# 1. Get absolute paths and perform pre-checks
app_abs_path = os.path.abspath(app_path)
output_abs_dir = os.path.abspath(output_dir)
# Handle input file based on task
if task in ["extract", "validate", "all_in_one"] and input_file is None:
raise ValueError(f"Input file is required for '{task}' task")
if input_file:
input_abs_path = os.path.abspath(input_file)
if not os.path.isfile(input_abs_path):
raise FileNotFoundError(f"Input file not found: {input_abs_path}")
if not os.path.isfile(app_abs_path):
raise FileNotFoundError(f"App script not found: {app_abs_path}")
if not os.path.isdir(output_abs_dir):
# Create the output directory if it doesn't exist
print(f"Output directory not found. Creating: {output_abs_dir}")
os.makedirs(output_abs_dir)
script_folder = os.path.dirname(app_abs_path)
# 2. Build environment variables for direct mode
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
env["RUN_INFERENCE_SERVER"] = "1"
env["USE_MOCK_LLM"] = "1"
env["TEST_MODE"] = "1"
# Enable direct mode
env["RUN_DIRECT_MODE"] = "1"
# Task selection
env["DIRECT_MODE_TASK"] = task
# General arguments
if input_file:
# Use pipe separator to handle file paths with spaces
env["DIRECT_MODE_INPUT_FILE"] = input_abs_path
env["DIRECT_MODE_OUTPUT_DIR"] = output_abs_dir
if text_column:
env["DIRECT_MODE_TEXT_COLUMN"] = text_column
if previous_output_files:
# Use pipe separator to handle file paths with spaces
env["DIRECT_MODE_PREVIOUS_OUTPUT_FILES"] = "|".join(previous_output_files)
if username:
env["DIRECT_MODE_USERNAME"] = username
if save_to_user_folders is not None:
env["SESSION_OUTPUT_FOLDER"] = str(save_to_user_folders)
if excel_sheets:
env["DIRECT_MODE_EXCEL_SHEETS"] = ",".join(excel_sheets)
if group_by:
env["DIRECT_MODE_GROUP_BY"] = group_by
# Model configuration
if model_choice:
env["DIRECT_MODE_MODEL_CHOICE"] = model_choice
if temperature is not None:
env["DIRECT_MODE_TEMPERATURE"] = str(temperature)
if batch_size is not None:
env["DIRECT_MODE_BATCH_SIZE"] = str(batch_size)
if max_tokens is not None:
env["DIRECT_MODE_MAX_TOKENS"] = str(max_tokens)
if api_url:
env["API_URL"] = api_url
if inference_server_model:
env["DIRECT_MODE_INFERENCE_SERVER_MODEL"] = inference_server_model
# Topic extraction arguments
if context:
env["DIRECT_MODE_CONTEXT"] = context
if candidate_topics:
env["DIRECT_MODE_CANDIDATE_TOPICS"] = candidate_topics
if force_zero_shot:
env["DIRECT_MODE_FORCE_ZERO_SHOT"] = force_zero_shot
if force_single_topic:
env["DIRECT_MODE_FORCE_SINGLE_TOPIC"] = force_single_topic
if produce_structured_summary:
env["DIRECT_MODE_PRODUCE_STRUCTURED_SUMMARY"] = produce_structured_summary
if sentiment:
env["DIRECT_MODE_SENTIMENT"] = sentiment
if additional_summary_instructions:
env["DIRECT_MODE_ADDITIONAL_SUMMARY_INSTRUCTIONS"] = (
additional_summary_instructions
)
# Validation arguments
if additional_validation_issues:
env["DIRECT_MODE_ADDITIONAL_VALIDATION_ISSUES"] = additional_validation_issues
if show_previous_table:
env["DIRECT_MODE_SHOW_PREVIOUS_TABLE"] = show_previous_table
if output_debug_files:
env["OUTPUT_DEBUG_FILES"] = output_debug_files
if max_time_for_loop is not None:
env["DIRECT_MODE_MAX_TIME_FOR_LOOP"] = str(max_time_for_loop)
# Deduplication arguments
if method:
env["DIRECT_MODE_DEDUP_METHOD"] = method
if similarity_threshold is not None:
env["DIRECT_MODE_SIMILARITY_THRESHOLD"] = str(similarity_threshold)
if merge_sentiment:
env["DIRECT_MODE_MERGE_SENTIMENT"] = merge_sentiment
if merge_general_topics:
env["DIRECT_MODE_MERGE_GENERAL_TOPICS"] = merge_general_topics
# Summarisation arguments
if summary_format:
env["DIRECT_MODE_SUMMARY_FORMAT"] = summary_format
if sample_reference_table:
env["DIRECT_MODE_SAMPLE_REFERENCE_TABLE"] = sample_reference_table
if no_of_sampled_summaries is not None:
env["DIRECT_MODE_NO_OF_SAMPLED_SUMMARIES"] = str(no_of_sampled_summaries)
if random_seed is not None:
env["DIRECT_MODE_RANDOM_SEED"] = str(random_seed)
# Output format arguments
if create_xlsx_output is not None:
env["DIRECT_MODE_CREATE_XLSX_OUTPUT"] = str(create_xlsx_output)
# Logging arguments
if save_logs_to_csv is not None:
env["SAVE_LOGS_TO_CSV"] = str(save_logs_to_csv)
if save_logs_to_dynamodb is not None:
env["SAVE_LOGS_TO_DYNAMODB"] = str(save_logs_to_dynamodb)
if cost_code:
env["DEFAULT_COST_CODE"] = cost_code
# 3. Build command (just run app.py, no arguments needed in direct mode)
command = ["python", app_abs_path]
command_str = " ".join(str(arg) for arg in command)
print(f"Executing direct mode command: {command_str}")
print(f"Direct mode task: {task}")
if input_file:
print(f"Input file: {input_abs_path}")
if text_column:
print(f"Text column: {text_column}")
# 4. Execute the command using subprocess
try:
result = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, # Combine stderr with stdout to avoid deadlocks
text=True,
cwd=script_folder, # Important for relative paths within the script
env=env,
bufsize=0, # Unbuffered
)
# Read output in real-time to avoid deadlocks
start_time = time.time()
# For Windows, we need a different approach
if sys.platform == "win32":
# On Windows, use communicate with timeout
try:
stdout, stderr = result.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
result.kill()
stdout, stderr = result.communicate()
raise subprocess.TimeoutExpired(result.args, timeout)
else:
# On Unix, we can use select for real-time reading
import select
stdout_lines = []
while result.poll() is None:
ready, _, _ = select.select([result.stdout], [], [], 0.1)
if ready:
line = result.stdout.readline()
if line:
print(line.rstrip(), flush=True)
stdout_lines.append(line)
# Check timeout
if time.time() - start_time > timeout:
result.kill()
raise subprocess.TimeoutExpired(result.args, timeout)
# Read remaining output
remaining = result.stdout.read()
if remaining:
print(remaining, end="", flush=True)
stdout_lines.append(remaining)
stdout = "".join(stdout_lines)
stderr = "" # Combined with stdout
print("--- SCRIPT STDOUT ---")
if stdout:
print(stdout)
print("--- SCRIPT STDERR ---")
if stderr:
print(stderr)
print("---------------------")
# Analyze the output for errors and success indicators
analysis = analyze_test_output(stdout, stderr)
if analysis["has_errors"]:
print("❌ Errors detected in output:")
for i, error_type in enumerate(analysis["error_types"]):
print(f" {i+1}. {error_type}")
if analysis["error_messages"]:
print(" Error messages:")
for msg in analysis["error_messages"][
:3
]: # Show first 3 error messages
print(f" - {msg}")
return False
elif result.returncode == 0:
success_msg = "βœ… Script executed successfully."
if analysis["success_indicators"]:
success_msg += f" (Success indicators: {', '.join(analysis['success_indicators'][:3])})"
print(success_msg)
return True
else:
print(f"❌ Command failed with return code {result.returncode}")
return False
except subprocess.TimeoutExpired:
result.kill()
print(f"❌ Subprocess timed out after {timeout} seconds.")
return False
except Exception as e:
print(f"❌ An unexpected error occurred: {e}")
return False
class TestCLITopicsExamples(unittest.TestCase):
"""Test suite for CLI topic extraction examples from the epilog."""
@classmethod
def setUpClass(cls):
"""Set up test environment before running tests."""
cls.script_path = os.path.join(
os.path.dirname(os.path.dirname(__file__)), "cli_topics.py"
)
cls.example_data_dir = os.path.join(
os.path.dirname(os.path.dirname(__file__)), "example_data"
)
cls.temp_output_dir = tempfile.mkdtemp(prefix="test_output_")
# Verify script exists
if not os.path.isfile(cls.script_path):
raise FileNotFoundError(f"CLI script not found: {cls.script_path}")
print(f"Test setup complete. Script: {cls.script_path}")
print(f"Example data directory: {cls.example_data_dir}")
print(f"Temp output directory: {cls.temp_output_dir}")
print("Using function mocking instead of HTTP server")
# Debug: Check if example data directory exists and list contents
if os.path.exists(cls.example_data_dir):
print("Example data directory exists. Contents:")
for item in os.listdir(cls.example_data_dir):
item_path = os.path.join(cls.example_data_dir, item)
if os.path.isfile(item_path):
print(f" File: {item} ({os.path.getsize(item_path)} bytes)")
else:
print(f" Directory: {item}")
else:
print(f"Example data directory does not exist: {cls.example_data_dir}")
@classmethod
def tearDownClass(cls):
"""Clean up test environment after running tests."""
if os.path.exists(cls.temp_output_dir):
shutil.rmtree(cls.temp_output_dir)
print(f"Cleaned up temp directory: {cls.temp_output_dir}")
def test_extract_topics_default_settings(self):
"""Test: Extract topics from a CSV file with default settings"""
print("\n=== Testing topic extraction with default settings ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Topic extraction with default settings should succeed")
print("βœ… Topic extraction with default settings passed")
def test_extract_topics_custom_model_and_context(self):
"""Test: Extract topics with custom model and context"""
print("\n=== Testing topic extraction with custom model and context ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
context="Social Care case notes for young people",
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(
result, "Topic extraction with custom model and context should succeed"
)
print("βœ… Topic extraction with custom model and context passed")
def test_extract_topics_with_grouping(self):
"""Test: Extract topics with grouping"""
print("\n=== Testing topic extraction with grouping ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
group_by="Client",
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Topic extraction with grouping should succeed")
print("βœ… Topic extraction with grouping passed")
def test_extract_topics_with_candidate_topics(self):
"""Test: Extract topics with candidate topics (zero-shot)"""
print("\n=== Testing topic extraction with candidate topics ===")
input_file = os.path.join(
self.example_data_dir, "dummy_consultation_response.csv"
)
candidate_topics_file = os.path.join(
self.example_data_dir, "dummy_consultation_response_themes.csv"
)
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
if not os.path.isfile(candidate_topics_file):
self.skipTest(f"Candidate topics file not found: {candidate_topics_file}")
result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Response text",
output_dir=self.temp_output_dir,
candidate_topics=candidate_topics_file,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Topic extraction with candidate topics should succeed")
print("βœ… Topic extraction with candidate topics passed")
def test_deduplicate_topics_fuzzy(self):
"""Test: Deduplicate topics using fuzzy matching"""
print("\n=== Testing topic deduplication with fuzzy matching ===")
# First, we need to create some output files by running extraction
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
# Run extraction first to create output files
extract_result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
if not extract_result:
self.skipTest("Extraction failed, cannot test deduplication")
# Find the output files (they should be in temp_output_dir)
# The file names follow a pattern like: {input_file_name}_col_{text_column}_reference_table.csv
import glob
reference_files = glob.glob(
os.path.join(self.temp_output_dir, "*reference_table.csv")
)
unique_files = glob.glob(
os.path.join(self.temp_output_dir, "*unique_topics.csv")
)
if not reference_files or not unique_files:
self.skipTest("Could not find output files from extraction")
result = run_cli_topics(
script_path=self.script_path,
task="deduplicate",
previous_output_files=[reference_files[0], unique_files[0]],
output_dir=self.temp_output_dir,
method="fuzzy",
similarity_threshold=90,
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(
result, "Topic deduplication with fuzzy matching should succeed"
)
print("βœ… Topic deduplication with fuzzy matching passed")
def test_deduplicate_topics_llm(self):
"""Test: Deduplicate topics using LLM"""
print("\n=== Testing topic deduplication with LLM ===")
# First, we need to create some output files by running extraction
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
# Run extraction first to create output files
extract_result = run_cli_topics(
script_path=self.script_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
if not extract_result:
self.skipTest("Extraction failed, cannot test deduplication")
# Find the output files
import glob
reference_files = glob.glob(
os.path.join(self.temp_output_dir, "*reference_table.csv")
)
unique_files = glob.glob(
os.path.join(self.temp_output_dir, "*unique_topics.csv")
)
if not reference_files or not unique_files:
self.skipTest("Could not find output files from extraction")
result = run_cli_topics(
script_path=self.script_path,
task="deduplicate",
previous_output_files=[reference_files[0], unique_files[0]],
output_dir=self.temp_output_dir,
method="llm",
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Topic deduplication with LLM should succeed")
print("βœ… Topic deduplication with LLM passed")
def test_all_in_one_pipeline(self):
"""Test: Run complete pipeline (extract, deduplicate, summarise)"""
print("\n=== Testing all-in-one pipeline ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
result = run_cli_topics(
script_path=self.script_path,
task="all_in_one",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080", # URL doesn't matter with function mocking
create_xlsx_output=False,
save_logs_to_csv=False,
timeout=120, # Shorter timeout for debugging
)
self.assertTrue(result, "All-in-one pipeline should succeed")
print("βœ… All-in-one pipeline passed")
def test_direct_mode_extract(self):
"""Test: Run app in direct mode for topic extraction"""
print("\n=== Testing direct mode - topic extraction ===")
input_file = os.path.join(self.example_data_dir, "combined_case_notes.csv")
if not os.path.isfile(input_file):
self.skipTest(f"Example file not found: {input_file}")
app_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "app.py")
if not os.path.isfile(app_path):
self.skipTest(f"App script not found: {app_path}")
result = run_app_direct_mode(
app_path=app_path,
task="extract",
input_file=input_file,
text_column="Case Note",
output_dir=self.temp_output_dir,
model_choice="test-model",
inference_server_model="test-model",
api_url="http://localhost:8080",
create_xlsx_output=False,
save_logs_to_csv=False,
)
self.assertTrue(result, "Direct mode topic extraction should succeed")
print("βœ… Direct mode topic extraction passed")
def run_all_tests():
"""Run all test examples and report results."""
print("=" * 80)
print("LLM TOPIC MODELLER TEST SUITE")
print("=" * 80)
print("This test suite includes:")
print("- CLI examples from the epilog")
print("- GUI application tests")
print("- Tests use a mock inference-server to avoid API costs")
print("Tests will be skipped if required example files are not found.")
print("=" * 80)
# Create test suite
loader = unittest.TestLoader()
suite = unittest.TestSuite()
# Add CLI tests
cli_suite = loader.loadTestsFromTestCase(TestCLITopicsExamples)
suite.addTests(cli_suite)
# Add GUI tests
try:
from test.test_gui_only import TestGUIAppOnly
gui_suite = loader.loadTestsFromTestCase(TestGUIAppOnly)
suite.addTests(gui_suite)
print("GUI tests included in test suite.")
except ImportError as e:
print(f"Warning: Could not import GUI tests: {e}")
print("Skipping GUI tests.")
# Run tests with detailed output
runner = unittest.TextTestRunner(verbosity=2, stream=None)
result = runner.run(suite)
# Print summary
print("\n" + "=" * 80)
print("TEST SUMMARY")
print("=" * 80)
print(f"Tests run: {result.testsRun}")
print(f"Failures: {len(result.failures)}")
print(f"Errors: {len(result.errors)}")
print(f"Skipped: {len(result.skipped) if hasattr(result, 'skipped') else 0}")
if result.failures:
print("\nFAILURES:")
for test, traceback in result.failures:
print(f"- {test}: {traceback}")
if result.errors:
print("\nERRORS:")
for test, traceback in result.errors:
print(f"- {test}: {traceback}")
success = len(result.failures) == 0 and len(result.errors) == 0
print(f"\nOverall result: {'βœ… PASSED' if success else '❌ FAILED'}")
print("=" * 80)
return success
if __name__ == "__main__":
# Run the test suite
success = run_all_tests()
exit(0 if success else 1)