FinanceAuger / README.md
therickglenn's picture
Update README.md
c5e2785 verified

A newer version of the Streamlit SDK is available: 1.52.1

Upgrade
metadata
title: FinanceAuger
emoji: πŸŒ–
colorFrom: purple
colorTo: red
sdk: streamlit
sdk_version: 1.42.0
app_file: app.py
pinned: false
license: mit
short_description: Financial Data Simulation and Prediction Dashboard

Market Data Simulation and Prediction Dashboard πŸ“Š

A powerful, interactive financial analysis tool that enables real-time comparison of multiple asset classes with advanced technical indicators and predictive analytics.

πŸš€ Features

  • Multi-Asset Analysis

    • Stocks & ETFs
    • Cryptocurrencies
    • Commodities & Futures
    • Global Market Indices
    • Regional Market ETFs
  • Technical Indicators

    • Bollinger Bands
    • Simple Moving Average (SMA)
    • Exponential Moving Average (EMA)
    • Moving Average Convergence Divergence (MACD)
    • Relative Strength Index (RSI)
    • Volume Weighted Average Price (VWAP)
  • Predictive Analytics

    • Random Forest Price Prediction
    • Exponential Smoothing Forecasting
    • Monte Carlo Simulation
    • Pattern Detection
    • Breakout Prediction
    • Value at Risk (VaR) Analysis
  • Interactive Visualization

    • Real-time data updates
    • Customizable time periods
    • Cross-asset comparison
    • Dynamic zooming and panning
    • Hover tooltips with precise values

πŸ› οΈ Tech Stack

  • Frontend

    • Streamlit: Interactive web interface
    • Plotly: Advanced financial charts
    • Custom CSS: Enhanced UI/UX
  • Backend

    • Python 3.13
    • yfinance: Real-time market data
    • pandas: Data manipulation
    • scikit-learn: Machine learning models
    • statsmodels: Time series analysis
    • ta: Technical analysis calculations
  • Configuration

    • YAML: Flexible asset group configuration
    • Environment variables: Secure settings management

πŸ“š Libraries & Dependencies

streamlit>=1.24.0
pandas>=2.0.0
yfinance>=0.2.0
plotly>=5.0.0
ta>=0.11.0
pyyaml>=6.0.0
scikit-learn>=1.6.1
statsmodels>=0.14.4
scipy>=1.11.0

πŸ—οΈ Architecture

  • Modular Design

    • Separate configuration files for markets and project settings
    • Dedicated prediction models module
    • Extensible asset group system
    • Component-based visualization
  • Data Flow

    1. User selects assets and indicators
    2. Real-time data fetching from Yahoo Finance
    3. Technical analysis calculations
    4. Dynamic chart generation
    5. Interactive user feedback

πŸ’‘ Skills Demonstrated

  • Technical

    • Financial data processing
    • Machine learning implementation
    • Real-time data visualization
    • Technical analysis implementation
    • Web application development
    • Configuration management
  • Financial

    • Multi-asset analysis
    • Technical indicator implementation
    • Predictive modeling
    • Risk assessment
    • Market data interpretation
    • Cross-market correlation analysis
  • Design

    • User interface design
    • Data visualization
    • User experience optimization
    • Interactive dashboard creation

🚦 Getting Started

  1. Clone the repository
  2. Install dependencies:
    pip install -r requirements.txt
    
  3. Run the application:
    streamlit run main.py
    

πŸ”„ Usage

  1. Select asset groups from the sidebar
  2. Choose specific tickers from each group
  3. Add technical indicators as needed
  4. Switch to Predictions & Risk tab for forecasting
  5. Adjust prediction parameters and models
  6. View raw data in the expandable section

πŸ“ˆ Prediction Models

  • Random Forest

    • Machine learning model for price prediction
    • Captures non-linear market patterns
    • Provides feature importance analysis
  • Exponential Smoothing

    • Time series forecasting
    • Handles trends and seasonality
    • Adaptive to market changes
  • Monte Carlo Simulation

    • Simulates multiple price paths
    • Calculates confidence intervals
    • Helps assess potential outcomes
  • Pattern Detection

    • Identifies trend changes
    • Spots support/resistance levels
    • Predicts potential breakouts
  • Risk Metrics

    • Value at Risk (VaR) calculation
    • Volatility analysis
    • Trend strength indicators

🎯 Future Enhancements

  • Additional technical indicators
  • Custom indicator parameters
  • Data export functionality
  • Automated analysis reports
  • Portfolio tracking
  • Alert system for price movements

πŸ“ License

MIT License - feel free to use and modify as needed.

πŸ‘₯ Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference