Spaces:
Running
Running
A newer version of the Streamlit SDK is available:
1.52.1
metadata
title: FinanceAuger
emoji: π
colorFrom: purple
colorTo: red
sdk: streamlit
sdk_version: 1.42.0
app_file: app.py
pinned: false
license: mit
short_description: Financial Data Simulation and Prediction Dashboard
Market Data Simulation and Prediction Dashboard π
A powerful, interactive financial analysis tool that enables real-time comparison of multiple asset classes with advanced technical indicators and predictive analytics.
π Features
Multi-Asset Analysis
- Stocks & ETFs
- Cryptocurrencies
- Commodities & Futures
- Global Market Indices
- Regional Market ETFs
Technical Indicators
- Bollinger Bands
- Simple Moving Average (SMA)
- Exponential Moving Average (EMA)
- Moving Average Convergence Divergence (MACD)
- Relative Strength Index (RSI)
- Volume Weighted Average Price (VWAP)
Predictive Analytics
- Random Forest Price Prediction
- Exponential Smoothing Forecasting
- Monte Carlo Simulation
- Pattern Detection
- Breakout Prediction
- Value at Risk (VaR) Analysis
Interactive Visualization
- Real-time data updates
- Customizable time periods
- Cross-asset comparison
- Dynamic zooming and panning
- Hover tooltips with precise values
π οΈ Tech Stack
Frontend
- Streamlit: Interactive web interface
- Plotly: Advanced financial charts
- Custom CSS: Enhanced UI/UX
Backend
- Python 3.13
- yfinance: Real-time market data
- pandas: Data manipulation
- scikit-learn: Machine learning models
- statsmodels: Time series analysis
- ta: Technical analysis calculations
Configuration
- YAML: Flexible asset group configuration
- Environment variables: Secure settings management
π Libraries & Dependencies
streamlit>=1.24.0
pandas>=2.0.0
yfinance>=0.2.0
plotly>=5.0.0
ta>=0.11.0
pyyaml>=6.0.0
scikit-learn>=1.6.1
statsmodels>=0.14.4
scipy>=1.11.0
ποΈ Architecture
Modular Design
- Separate configuration files for markets and project settings
- Dedicated prediction models module
- Extensible asset group system
- Component-based visualization
Data Flow
- User selects assets and indicators
- Real-time data fetching from Yahoo Finance
- Technical analysis calculations
- Dynamic chart generation
- Interactive user feedback
π‘ Skills Demonstrated
Technical
- Financial data processing
- Machine learning implementation
- Real-time data visualization
- Technical analysis implementation
- Web application development
- Configuration management
Financial
- Multi-asset analysis
- Technical indicator implementation
- Predictive modeling
- Risk assessment
- Market data interpretation
- Cross-market correlation analysis
Design
- User interface design
- Data visualization
- User experience optimization
- Interactive dashboard creation
π¦ Getting Started
- Clone the repository
- Install dependencies:
pip install -r requirements.txt - Run the application:
streamlit run main.py
π Usage
- Select asset groups from the sidebar
- Choose specific tickers from each group
- Add technical indicators as needed
- Switch to Predictions & Risk tab for forecasting
- Adjust prediction parameters and models
- View raw data in the expandable section
π Prediction Models
Random Forest
- Machine learning model for price prediction
- Captures non-linear market patterns
- Provides feature importance analysis
Exponential Smoothing
- Time series forecasting
- Handles trends and seasonality
- Adaptive to market changes
Monte Carlo Simulation
- Simulates multiple price paths
- Calculates confidence intervals
- Helps assess potential outcomes
Pattern Detection
- Identifies trend changes
- Spots support/resistance levels
- Predicts potential breakouts
Risk Metrics
- Value at Risk (VaR) calculation
- Volatility analysis
- Trend strength indicators
π― Future Enhancements
- Additional technical indicators
- Custom indicator parameters
- Data export functionality
- Automated analysis reports
- Portfolio tracking
- Alert system for price movements
π License
MIT License - feel free to use and modify as needed.
π₯ Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference