Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,341 Bytes
d59c855 feeaf45 7449d44 feeaf45 7449d44 f7dbbd9 7449d44 feeaf45 7449d44 f7dbbd9 7449d44 11a7475 feeaf45 11a7475 feeaf45 7449d44 11a7475 d59c855 feeaf45 11a7475 7449d44 feeaf45 11a7475 feeaf45 11a7475 feeaf45 7449d44 feeaf45 7449d44 2d0241c 7449d44 11a7475 7449d44 11a7475 7449d44 11a7475 7449d44 11a7475 7449d44 feeaf45 11a7475 feeaf45 7449d44 11a7475 feeaf45 11a7475 feeaf45 11a7475 feeaf45 11a7475 feeaf45 11a7475 7449d44 11a7475 7449d44 11a7475 7449d44 11a7475 7449d44 feeaf45 11a7475 feeaf45 7449d44 11a7475 7449d44 11a7475 feeaf45 11a7475 feeaf45 11a7475 feeaf45 11a7475 feeaf45 11a7475 feeaf45 7449d44 11a7475 7449d44 11a7475 7449d44 11a7475 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import gradio as gr
import torch
import numpy as np
from PIL import Image
try:
from spaces import GPU
except ImportError:
# Define a no-op decorator if running locally
def GPU(func):
return func
import os
import argparse
from inference import GenerativeInferenceModel, get_inference_configs
# Parse command line arguments
parser = argparse.ArgumentParser(description='Run Generative Inference Demo')
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
args = parser.parse_args()
# Create model directories if they don't exist
os.makedirs("models", exist_ok=True)
os.makedirs("stimuli", exist_ok=True)
# Check if running on Hugging Face Spaces
if "SPACE_ID" in os.environ:
default_port = int(os.environ.get("PORT", 7860))
else:
default_port = 8861 # Local default port
# Initialize model
model = GenerativeInferenceModel()
# Define example images and their parameters with updated values from the research
examples = [
{
"image": os.path.join("stimuli", "Kanizsa_square.jpg"),
"name": "Kanizsa Square",
"wiki": "https://en.wikipedia.org/wiki/Kanizsa_triangle",
"papers": [
"[Gestalt Psychology](https://en.wikipedia.org/wiki/Gestalt_psychology)",
"[Neural Mechanisms](https://doi.org/10.1016/j.tics.2003.08.003)"
],
"method": "ReverseDiffusion",
"reverse_diff": {
"model": "resnet50_robust",
"layer": "layer4", # last layer
"initial_noise": 0.1,
"diffusion_noise": 0.003, # Corrected parameter name
"step_size": 0.5, # Step size (learning rate parameter)
"iterations": 50, # Number of iterations
"epsilon": 0.5
}
},
{
"image": os.path.join("stimuli", "face_vase.png"),
"name": "Rubin's Face-Vase (Object Prior)",
"wiki": "https://en.wikipedia.org/wiki/Rubin_vase",
"papers": [
"[Figure-Ground Perception](https://en.wikipedia.org/wiki/Figure-ground_(perception))",
"[Bistable Perception](https://doi.org/10.1016/j.tics.2003.08.003)"
],
"method": "ReverseDiffusion",
"reverse_diff": {
"model": "resnet50_robust",
"layer": "layer4", # last layer
"initial_noise": 0.7,
"diffusion_noise": 0.005, # Corrected parameter name
"step_size": 1.0, # Step size (learning rate parameter)
"iterations": 50, # Number of iterations
"epsilon": 1.0
}
},
{
"image": os.path.join("stimuli", "figure_ground.png"),
"name": "Figure-Ground Illusion",
"wiki": "https://en.wikipedia.org/wiki/Figure-ground_(perception)",
"papers": [
"[Gestalt Principles](https://en.wikipedia.org/wiki/Gestalt_psychology)",
"[Perceptual Organization](https://doi.org/10.1016/j.tics.2003.08.003)"
],
"method": "ReverseDiffusion",
"reverse_diff": {
"model": "resnet50_robust",
"layer": "layer3",
"initial_noise": 0.5,
"diffusion_noise": 0.005, # Corrected parameter name
"step_size": 0.8, # Step size (learning rate parameter)
"iterations": 50, # Number of iterations
"epsilon": 0.8
}
},
{
"image": os.path.join("stimuli", "Neon_Color_Circle.jpg"),
"name": "Neon Color Spreading",
"wiki": "https://en.wikipedia.org/wiki/Neon_color_spreading",
"papers": [
"[Color Assimilation](https://doi.org/10.1016/j.visres.2000.200.1)",
"[Perceptual Filling-in](https://doi.org/10.1016/j.tics.2003.08.003)"
],
"method": "ReverseDiffusion",
"reverse_diff": {
"model": "resnet50_robust",
"layer": "layer3",
"initial_noise": 0.5,
"diffusion_noise": 0.003, # Corrected parameter name
"step_size": 1.0, # Step size (learning rate parameter)
"iterations": 50, # Number of iterations
"epsilon": 1.0
}
},
{
"image": os.path.join("stimuli", "EhresteinSingleColor.png"),
"name": "Ehrenstein Illusion",
"wiki": "https://en.wikipedia.org/wiki/Ehrenstein_illusion",
"papers": [
"[Subjective Contours](https://doi.org/10.1016/j.visres.2000.200.1)",
"[Neural Processing](https://doi.org/10.1016/j.tics.2003.08.003)"
],
"method": "ReverseDiffusion",
"reverse_diff": {
"model": "resnet50_robust",
"layer": "layer3",
"initial_noise": 0.5,
"diffusion_noise": 0.005, # Corrected parameter name
"step_size": 0.8, # Step size (learning rate parameter)
"iterations": 50, # Number of iterations
"epsilon": 0.8
}
},
{
"image": os.path.join("stimuli", "Confetti_illusion.png"),
"name": "Confetti Illusion",
"wiki": "https://en.wikipedia.org/wiki/Optical_illusion",
"papers": [
"[Color Perception](https://doi.org/10.1016/j.visres.2000.200.1)",
"[Context Effects](https://doi.org/10.1016/j.tics.2003.08.003)"
],
"method": "ReverseDiffusion",
"reverse_diff": {
"model": "resnet50_robust",
"layer": "layer3",
"initial_noise": 0.7,
"diffusion_noise": 0.01, # Corrected parameter name
"step_size": 1.0, # Step size (learning rate parameter)
"iterations": 50, # Number of iterations
"epsilon": 1.0
}
},
{
"image": os.path.join("stimuli", "CornsweetBlock.png"),
"name": "Cornsweet Illusion",
"wiki": "https://en.wikipedia.org/wiki/Cornsweet_illusion",
"papers": [
"[Brightness Perception](https://doi.org/10.1016/j.visres.2000.200.1)",
"[Edge Effects](https://doi.org/10.1016/j.tics.2003.08.003)"
],
"method": "ReverseDiffusion",
"reverse_diff": {
"model": "resnet50_robust",
"layer": "layer3",
"initial_noise": 0.5,
"diffusion_noise": 0.005, # Corrected parameter name
"step_size": 0.8, # Step size (learning rate parameter)
"iterations": 50, # Number of iterations
"epsilon": 0.8
}
},
{
"image": os.path.join("stimuli", "GroupingByContinuity.png"),
"name": "Grouping by Continuity",
"wiki": "https://en.wikipedia.org/wiki/Principles_of_grouping",
"papers": [
"[Gestalt Principles](https://en.wikipedia.org/wiki/Gestalt_psychology)",
"[Visual Organization](https://doi.org/10.1016/j.tics.2003.08.003)"
],
"method": "ReverseDiffusion",
"reverse_diff": {
"model": "resnet50_robust",
"layer": "layer3",
"initial_noise": 0.1,
"diffusion_noise": 0.005, # Corrected parameter name
"step_size": 0.4, # Step size (learning rate parameter)
"iterations": 100, # Number of iterations
"epsilon": 0.4
}
}
]
@GPU
def run_inference(image, model_type, inference_type, eps_value, num_iterations,
initial_noise=0.05, diffusion_noise=0.3, step_size=0.8, model_layer="layer3"):
# Convert eps to float
eps = float(eps_value)
# Load inference configuration based on the selected type
config = get_inference_configs(inference_type=inference_type, eps=eps, n_itr=int(num_iterations))
# Handle ReverseDiffusion specific parameters
if inference_type == "ReverseDiffusion":
config['initial_inference_noise_ratio'] = float(initial_noise)
config['diffusion_noise_ratio'] = float(diffusion_noise)
config['step_size'] = float(step_size) # Added step size parameter
config['top_layer'] = model_layer
# Run generative inference
result = model.inference(image, model_type, config)
# Extract results based on return type
if isinstance(result, tuple):
# Old format returning (output_image, all_steps)
output_image, all_steps = result
else:
# New format returning dictionary
output_image = result['final_image']
all_steps = result['steps']
# Create animation frames
frames = []
for i, step_image in enumerate(all_steps):
# Convert tensor to PIL image
step_pil = Image.fromarray((step_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
frames.append(step_pil)
# Convert the final output image to PIL
final_image = Image.fromarray((output_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
# Return the final inferred image and the animation frames directly
return final_image, frames
# Helper function to apply example parameters
def apply_example(example):
return [
example["image"],
"resnet50_robust", # Model type
example["method"], # Inference type
example["reverse_diff"]["epsilon"], # Epsilon value
example["reverse_diff"]["iterations"], # Number of iterations
example["reverse_diff"]["initial_noise"], # Initial noise
example["reverse_diff"]["diffusion_noise"], # Diffusion noise value (corrected)
example["reverse_diff"]["step_size"], # Step size (added)
example["reverse_diff"]["layer"] # Model layer
]
# Define the interface
with gr.Blocks(title="Generative Inference Demo") as demo:
gr.Markdown("# Generative Inference Demo")
gr.Markdown("This demo showcases how neural networks can perceive visual illusions through generative inference.")
# Main processing interface
with gr.Row():
with gr.Column(scale=1):
# Inputs
image_input = gr.Image(label="Input Image", type="pil")
with gr.Row():
model_choice = gr.Dropdown(
choices=["resnet50_robust", "standard_resnet50"],
value="resnet50_robust",
label="Model"
)
inference_type = gr.Dropdown(
choices=["ReverseDiffusion", "IncreaseConfidence"],
value="ReverseDiffusion",
label="Inference Method"
)
with gr.Row():
eps_slider = gr.Slider(minimum=0.01, maximum=3.0, value=0.5, step=0.01, label="Epsilon (Perturbation Size)")
iterations_slider = gr.Slider(minimum=1, maximum=50, value=50, step=1, label="Number of Iterations") # Default 50
with gr.Row():
initial_noise_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.05, step=0.01,
label="Initial Noise Ratio")
diffusion_noise_slider = gr.Slider(minimum=0.0, maximum=0.05, value=0.01, step=0.001,
label="Diffusion Noise Ratio") # Corrected name
with gr.Row():
step_size_slider = gr.Slider(minimum=0.01, maximum=2.0, value=0.5, step=0.01,
label="Step Size") # Added step size slider
layer_choice = gr.Dropdown(
choices=["all", "conv1", "bn1", "relu", "maxpool", "layer1", "layer2", "layer3", "layer4", "avgpool"],
value="all",
label="Model Layer"
)
run_button = gr.Button("Run Inference", variant="primary")
with gr.Column(scale=2):
# Outputs
output_image = gr.Image(label="Final Inferred Image")
output_frames = gr.Gallery(label="Inference Steps", columns=5, rows=2)
# Examples section with integrated explanations
gr.Markdown("## Visual Illusion Examples")
gr.Markdown("Select an illusion to load its parameters and see how generative inference reveals perceptual effects")
# For each example, create a row with the image and explanation side by side
for i, ex in enumerate(examples):
with gr.Row():
# Left column for the image
with gr.Column(scale=1):
# Display the example image
example_img = gr.Image(value=ex["image"], type="filepath", label=f"{ex['name']}")
load_btn = gr.Button(f"Load Parameters", variant="primary")
# Set up the load button to apply this example's parameters
load_btn.click(
fn=lambda ex=ex: apply_example(ex),
outputs=[
image_input, model_choice, inference_type,
eps_slider, iterations_slider,
initial_noise_slider, diffusion_noise_slider,
step_size_slider, layer_choice
]
)
# Right column for the explanation
with gr.Column(scale=2):
gr.Markdown(f"### {ex['name']}")
gr.Markdown(f"[Read more on Wikipedia]({ex['wiki']})")
gr.Markdown("**Previous Explanations:**")
papers_list = "\n".join([f"- {paper}" for paper in ex["papers"]])
gr.Markdown(papers_list)
gr.Markdown("**Research Parameters:**")
params_md = f"""
- **Method**: {ex['method']}
- **Model Layer**: {ex['reverse_diff']['layer']}
- **Initial Noise**: {ex['reverse_diff']['initial_noise']}
- **Diffusion Noise**: {ex['reverse_diff']['diffusion_noise']}
- **Step Size**: {ex['reverse_diff']['step_size']}
- **Iterations**: {ex['reverse_diff']['iterations']}
- **Epsilon**: {ex['reverse_diff']['epsilon']}
"""
gr.Markdown(params_md)
if i < len(examples) - 1: # Don't add separator after the last example
gr.Markdown("---")
# Set up event handler for the main inference
run_button.click(
fn=run_inference,
inputs=[
image_input, model_choice, inference_type,
eps_slider, iterations_slider,
initial_noise_slider, diffusion_noise_slider,
step_size_slider, layer_choice
],
outputs=[output_image, output_frames]
)
# About section
gr.Markdown("""
## About Generative Inference
Generative inference is a technique that reveals how neural networks perceive visual stimuli. This demo primarily uses the ReverseDiffusion method.
### ReverseDiffusion
Starts with a noisy version of the image and guides the optimization to match features of the noisy image.
This approach reveals different aspects of visual processing and is inspired by diffusion models.
### IncreaseConfidence
Optimizes the network's activations to increase confidence in classification, leading to enhanced
features that the network associates with its preferred interpretation.
### Parameters:
- **Initial Noise Ratio**: Controls the amount of noise added to the image at the beginning
- **Diffusion Noise Ratio**: Controls the amount of noise added at each optimization step
- **Step Size**: Learning rate for the optimization process
- **Number of Iterations**: How many optimization steps to perform
- **Model Layer**: Select a specific layer of the ResNet50 model to extract features from
- **Epsilon**: Controls the size of perturbation during optimization
Different layers capture different levels of abstraction - earlier layers represent low-level features
like edges and textures, while later layers represent higher-level features and object parts.
""")
# Launch the demo
if __name__ == "__main__":
print(f"Starting server on port {args.port}")
demo.launch(
server_name="0.0.0.0",
server_port=args.port,
share=False,
debug=True
) |