File size: 16,341 Bytes
d59c855
feeaf45
7449d44
 
feeaf45
 
 
 
 
 
 
7449d44
 
 
f7dbbd9
7449d44
 
feeaf45
7449d44
f7dbbd9
7449d44
 
 
 
11a7475
feeaf45
11a7475
feeaf45
 
 
7449d44
 
 
11a7475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59c855
feeaf45
11a7475
7449d44
 
 
feeaf45
11a7475
feeaf45
 
 
 
11a7475
 
feeaf45
7449d44
 
feeaf45
 
 
 
 
 
 
 
 
 
7449d44
 
 
 
 
 
 
 
2d0241c
 
 
 
 
7449d44
11a7475
 
 
 
 
 
 
 
 
 
 
 
 
 
7449d44
 
 
 
 
11a7475
7449d44
 
 
11a7475
7449d44
 
 
11a7475
 
7449d44
 
 
feeaf45
11a7475
 
feeaf45
7449d44
 
 
11a7475
 
feeaf45
11a7475
 
feeaf45
11a7475
 
feeaf45
11a7475
 
 
feeaf45
 
 
 
 
 
11a7475
7449d44
 
 
 
11a7475
7449d44
11a7475
 
 
7449d44
11a7475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7449d44
 
feeaf45
 
11a7475
 
 
feeaf45
7449d44
 
 
11a7475
7449d44
 
 
11a7475
feeaf45
11a7475
feeaf45
11a7475
 
 
 
 
feeaf45
11a7475
feeaf45
11a7475
 
 
 
 
feeaf45
 
 
7449d44
 
11a7475
7449d44
 
 
11a7475
 
7449d44
 
11a7475
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import gradio as gr
import torch
import numpy as np
from PIL import Image
try:
    from spaces import GPU
except ImportError:
    # Define a no-op decorator if running locally
    def GPU(func):
        return func
    
import os
import argparse
from inference import GenerativeInferenceModel, get_inference_configs

# Parse command line arguments
parser = argparse.ArgumentParser(description='Run Generative Inference Demo')
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
args = parser.parse_args()

# Create model directories if they don't exist
os.makedirs("models", exist_ok=True)
os.makedirs("stimuli", exist_ok=True)

# Check if running on Hugging Face Spaces
if "SPACE_ID" in os.environ:
    default_port = int(os.environ.get("PORT", 7860))
else:
    default_port = 8861  # Local default port

# Initialize model
model = GenerativeInferenceModel()

# Define example images and their parameters with updated values from the research
examples = [
    {
        "image": os.path.join("stimuli", "Kanizsa_square.jpg"),
        "name": "Kanizsa Square",
        "wiki": "https://en.wikipedia.org/wiki/Kanizsa_triangle",
        "papers": [
            "[Gestalt Psychology](https://en.wikipedia.org/wiki/Gestalt_psychology)",
            "[Neural Mechanisms](https://doi.org/10.1016/j.tics.2003.08.003)"
        ],
        "method": "ReverseDiffusion",
        "reverse_diff": {
            "model": "resnet50_robust",
            "layer": "layer4",  # last layer
            "initial_noise": 0.1,
            "diffusion_noise": 0.003,  # Corrected parameter name
            "step_size": 0.5,  # Step size (learning rate parameter)
            "iterations": 50,  # Number of iterations
            "epsilon": 0.5
        }
    },
    {
        "image": os.path.join("stimuli", "face_vase.png"),
        "name": "Rubin's Face-Vase (Object Prior)",
        "wiki": "https://en.wikipedia.org/wiki/Rubin_vase",
        "papers": [
            "[Figure-Ground Perception](https://en.wikipedia.org/wiki/Figure-ground_(perception))",
            "[Bistable Perception](https://doi.org/10.1016/j.tics.2003.08.003)"
        ],
        "method": "ReverseDiffusion",
        "reverse_diff": {
            "model": "resnet50_robust",
            "layer": "layer4",  # last layer
            "initial_noise": 0.7,
            "diffusion_noise": 0.005,  # Corrected parameter name
            "step_size": 1.0,  # Step size (learning rate parameter)
            "iterations": 50,  # Number of iterations
            "epsilon": 1.0
        }
    },
    {
        "image": os.path.join("stimuli", "figure_ground.png"),
        "name": "Figure-Ground Illusion",
        "wiki": "https://en.wikipedia.org/wiki/Figure-ground_(perception)",
        "papers": [
            "[Gestalt Principles](https://en.wikipedia.org/wiki/Gestalt_psychology)",
            "[Perceptual Organization](https://doi.org/10.1016/j.tics.2003.08.003)"
        ],
        "method": "ReverseDiffusion",
        "reverse_diff": {
            "model": "resnet50_robust",
            "layer": "layer3",
            "initial_noise": 0.5,
            "diffusion_noise": 0.005,  # Corrected parameter name
            "step_size": 0.8,  # Step size (learning rate parameter)
            "iterations": 50,  # Number of iterations
            "epsilon": 0.8
        }
    },
    {
        "image": os.path.join("stimuli", "Neon_Color_Circle.jpg"),
        "name": "Neon Color Spreading",
        "wiki": "https://en.wikipedia.org/wiki/Neon_color_spreading",
        "papers": [
            "[Color Assimilation](https://doi.org/10.1016/j.visres.2000.200.1)",
            "[Perceptual Filling-in](https://doi.org/10.1016/j.tics.2003.08.003)"
        ],
        "method": "ReverseDiffusion",
        "reverse_diff": {
            "model": "resnet50_robust",
            "layer": "layer3",
            "initial_noise": 0.5,
            "diffusion_noise": 0.003,  # Corrected parameter name
            "step_size": 1.0,  # Step size (learning rate parameter)
            "iterations": 50,  # Number of iterations
            "epsilon": 1.0
        }
    },
    {
        "image": os.path.join("stimuli", "EhresteinSingleColor.png"),
        "name": "Ehrenstein Illusion",
        "wiki": "https://en.wikipedia.org/wiki/Ehrenstein_illusion",
        "papers": [
            "[Subjective Contours](https://doi.org/10.1016/j.visres.2000.200.1)",
            "[Neural Processing](https://doi.org/10.1016/j.tics.2003.08.003)"
        ],
        "method": "ReverseDiffusion",
        "reverse_diff": {
            "model": "resnet50_robust",
            "layer": "layer3",
            "initial_noise": 0.5,
            "diffusion_noise": 0.005,  # Corrected parameter name
            "step_size": 0.8,  # Step size (learning rate parameter)
            "iterations": 50,  # Number of iterations
            "epsilon": 0.8
        }
    },
    {
        "image": os.path.join("stimuli", "Confetti_illusion.png"),
        "name": "Confetti Illusion",
        "wiki": "https://en.wikipedia.org/wiki/Optical_illusion",
        "papers": [
            "[Color Perception](https://doi.org/10.1016/j.visres.2000.200.1)",
            "[Context Effects](https://doi.org/10.1016/j.tics.2003.08.003)"
        ],
        "method": "ReverseDiffusion",
        "reverse_diff": {
            "model": "resnet50_robust",
            "layer": "layer3",
            "initial_noise": 0.7,
            "diffusion_noise": 0.01,  # Corrected parameter name
            "step_size": 1.0,  # Step size (learning rate parameter)
            "iterations": 50,  # Number of iterations
            "epsilon": 1.0
        }
    },
    {
        "image": os.path.join("stimuli", "CornsweetBlock.png"),
        "name": "Cornsweet Illusion",
        "wiki": "https://en.wikipedia.org/wiki/Cornsweet_illusion",
        "papers": [
            "[Brightness Perception](https://doi.org/10.1016/j.visres.2000.200.1)",
            "[Edge Effects](https://doi.org/10.1016/j.tics.2003.08.003)"
        ],
        "method": "ReverseDiffusion",
        "reverse_diff": {
            "model": "resnet50_robust",
            "layer": "layer3",
            "initial_noise": 0.5,
            "diffusion_noise": 0.005,  # Corrected parameter name
            "step_size": 0.8,  # Step size (learning rate parameter)
            "iterations": 50,  # Number of iterations
            "epsilon": 0.8
        }
    },
    {
        "image": os.path.join("stimuli", "GroupingByContinuity.png"),
        "name": "Grouping by Continuity",
        "wiki": "https://en.wikipedia.org/wiki/Principles_of_grouping",
        "papers": [
            "[Gestalt Principles](https://en.wikipedia.org/wiki/Gestalt_psychology)",
            "[Visual Organization](https://doi.org/10.1016/j.tics.2003.08.003)"
        ],
        "method": "ReverseDiffusion",
        "reverse_diff": {
            "model": "resnet50_robust",
            "layer": "layer3",
            "initial_noise": 0.1,
            "diffusion_noise": 0.005,  # Corrected parameter name
            "step_size": 0.4,  # Step size (learning rate parameter)
            "iterations": 100,  # Number of iterations
            "epsilon": 0.4
        }
    }
]

@GPU 
def run_inference(image, model_type, inference_type, eps_value, num_iterations, 
                 initial_noise=0.05, diffusion_noise=0.3, step_size=0.8, model_layer="layer3"):
    # Convert eps to float
    eps = float(eps_value)
    
    # Load inference configuration based on the selected type
    config = get_inference_configs(inference_type=inference_type, eps=eps, n_itr=int(num_iterations))
    
    # Handle ReverseDiffusion specific parameters
    if inference_type == "ReverseDiffusion":
        config['initial_inference_noise_ratio'] = float(initial_noise)
        config['diffusion_noise_ratio'] = float(diffusion_noise)
        config['step_size'] = float(step_size)  # Added step size parameter
        config['top_layer'] = model_layer
    
    # Run generative inference
    result = model.inference(image, model_type, config)
    
    # Extract results based on return type
    if isinstance(result, tuple):
        # Old format returning (output_image, all_steps)
        output_image, all_steps = result
    else:
        # New format returning dictionary
        output_image = result['final_image']
        all_steps = result['steps']
    
    # Create animation frames
    frames = []
    for i, step_image in enumerate(all_steps):
        # Convert tensor to PIL image
        step_pil = Image.fromarray((step_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
        frames.append(step_pil)
    
    # Convert the final output image to PIL
    final_image = Image.fromarray((output_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
    
    # Return the final inferred image and the animation frames directly
    return final_image, frames

# Helper function to apply example parameters
def apply_example(example):
    return [
        example["image"],
        "resnet50_robust",  # Model type
        example["method"],  # Inference type
        example["reverse_diff"]["epsilon"],  # Epsilon value
        example["reverse_diff"]["iterations"],  # Number of iterations
        example["reverse_diff"]["initial_noise"],  # Initial noise
        example["reverse_diff"]["diffusion_noise"],  # Diffusion noise value (corrected)
        example["reverse_diff"]["step_size"],  # Step size (added)
        example["reverse_diff"]["layer"]  # Model layer
    ]

# Define the interface
with gr.Blocks(title="Generative Inference Demo") as demo:
    gr.Markdown("# Generative Inference Demo")
    gr.Markdown("This demo showcases how neural networks can perceive visual illusions through generative inference.")
    
    # Main processing interface
    with gr.Row():
        with gr.Column(scale=1):
            # Inputs
            image_input = gr.Image(label="Input Image", type="pil")
            
            with gr.Row():
                model_choice = gr.Dropdown(
                    choices=["resnet50_robust", "standard_resnet50"], 
                    value="resnet50_robust", 
                    label="Model"
                )
                
                inference_type = gr.Dropdown(
                    choices=["ReverseDiffusion", "IncreaseConfidence"], 
                    value="ReverseDiffusion", 
                    label="Inference Method"
                )
            
            with gr.Row():
                eps_slider = gr.Slider(minimum=0.01, maximum=3.0, value=0.5, step=0.01, label="Epsilon (Perturbation Size)")
                iterations_slider = gr.Slider(minimum=1, maximum=50, value=50, step=1, label="Number of Iterations")  # Default 50
            
            with gr.Row():
                initial_noise_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.05, step=0.01, 
                                               label="Initial Noise Ratio")
                diffusion_noise_slider = gr.Slider(minimum=0.0, maximum=0.05, value=0.01, step=0.001, 
                                                label="Diffusion Noise Ratio")  # Corrected name
                
            with gr.Row():
                step_size_slider = gr.Slider(minimum=0.01, maximum=2.0, value=0.5, step=0.01, 
                                           label="Step Size")  # Added step size slider
                layer_choice = gr.Dropdown(
                    choices=["all", "conv1", "bn1", "relu", "maxpool", "layer1", "layer2", "layer3", "layer4", "avgpool"],
                    value="all",
                    label="Model Layer"
                )
            
            run_button = gr.Button("Run Inference", variant="primary")
            
        with gr.Column(scale=2):
            # Outputs
            output_image = gr.Image(label="Final Inferred Image")
            output_frames = gr.Gallery(label="Inference Steps", columns=5, rows=2)
    
    # Examples section with integrated explanations
    gr.Markdown("## Visual Illusion Examples")
    gr.Markdown("Select an illusion to load its parameters and see how generative inference reveals perceptual effects")
    
    # For each example, create a row with the image and explanation side by side
    for i, ex in enumerate(examples):
        with gr.Row():
            # Left column for the image
            with gr.Column(scale=1):
                # Display the example image
                example_img = gr.Image(value=ex["image"], type="filepath", label=f"{ex['name']}")
                load_btn = gr.Button(f"Load Parameters", variant="primary")
                
                # Set up the load button to apply this example's parameters
                load_btn.click(
                    fn=lambda ex=ex: apply_example(ex),
                    outputs=[
                        image_input, model_choice, inference_type, 
                        eps_slider, iterations_slider,
                        initial_noise_slider, diffusion_noise_slider,
                        step_size_slider, layer_choice
                    ]
                )
            
            # Right column for the explanation
            with gr.Column(scale=2):
                gr.Markdown(f"### {ex['name']}")
                gr.Markdown(f"[Read more on Wikipedia]({ex['wiki']})")
                
                gr.Markdown("**Previous Explanations:**")
                papers_list = "\n".join([f"- {paper}" for paper in ex["papers"]])
                gr.Markdown(papers_list)
                
                gr.Markdown("**Research Parameters:**")
                params_md = f"""
                - **Method**: {ex['method']}
                - **Model Layer**: {ex['reverse_diff']['layer']}
                - **Initial Noise**: {ex['reverse_diff']['initial_noise']}
                - **Diffusion Noise**: {ex['reverse_diff']['diffusion_noise']}
                - **Step Size**: {ex['reverse_diff']['step_size']}
                - **Iterations**: {ex['reverse_diff']['iterations']}
                - **Epsilon**: {ex['reverse_diff']['epsilon']}
                """
                gr.Markdown(params_md)
        
        if i < len(examples) - 1:  # Don't add separator after the last example
            gr.Markdown("---")
    
    # Set up event handler for the main inference
    run_button.click(
        fn=run_inference,
        inputs=[
            image_input, model_choice, inference_type, 
            eps_slider, iterations_slider,
            initial_noise_slider, diffusion_noise_slider,
            step_size_slider, layer_choice
        ],
        outputs=[output_image, output_frames]
    )
    
    # About section
    gr.Markdown("""
    ## About Generative Inference
    
    Generative inference is a technique that reveals how neural networks perceive visual stimuli. This demo primarily uses the ReverseDiffusion method.
    
    ### ReverseDiffusion
    Starts with a noisy version of the image and guides the optimization to match features of the noisy image. 
    This approach reveals different aspects of visual processing and is inspired by diffusion models.
    
    ### IncreaseConfidence
    Optimizes the network's activations to increase confidence in classification, leading to enhanced 
    features that the network associates with its preferred interpretation.
    
    ### Parameters:
    - **Initial Noise Ratio**: Controls the amount of noise added to the image at the beginning
    - **Diffusion Noise Ratio**: Controls the amount of noise added at each optimization step
    - **Step Size**: Learning rate for the optimization process
    - **Number of Iterations**: How many optimization steps to perform
    - **Model Layer**: Select a specific layer of the ResNet50 model to extract features from
    - **Epsilon**: Controls the size of perturbation during optimization
    
    Different layers capture different levels of abstraction - earlier layers represent low-level features
    like edges and textures, while later layers represent higher-level features and object parts.
    """)

# Launch the demo
if __name__ == "__main__":
    print(f"Starting server on port {args.port}")
    demo.launch(
        server_name="0.0.0.0",
        server_port=args.port,
        share=False,
        debug=True
    )