File size: 1,678 Bytes
a7a7fe4
 
c316c05
 
 
a7a7fe4
c316c05
 
 
 
a7a7fe4
c316c05
a7a7fe4
 
c316c05
 
 
 
 
 
a7a7fe4
c316c05
 
 
a7a7fe4
c316c05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a7fe4
 
c316c05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
import time
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import bitsandbytes as bnb  # Quantization için

# Model yükle
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

def classify_with_quantization(text, use_quantization=False):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    
    if use_quantization:
        # 8-bit quantization uygula
        model_quantized = AutoModelForSequenceClassification.from_pretrained(
            model_name, 
            load_in_8bit=True, 
            device_map="auto"
        )
        model_to_use = model_quantized
    else:
        model_to_use = model
    
    start_time = time.time()
    with torch.no_grad():
        outputs = model_to_use(**inputs)
    inference_time = time.time() - start_time
    
    logits = outputs.logits
    predicted_class = logits.argmax().item()
    label = "POSITIVE" if predicted_class == 1 else "NEGATIVE"
    
    return f"Label: {label}\nInference Time: {inference_time:.4f}s"

# Gradio interface
demo = gr.Interface(
    fn=classify_with_quantization,
    inputs=[
        gr.Textbox(lines=2, placeholder="Enter text for sentiment analysis..."),
        gr.Checkbox(label="Use 8-bit Quantization", value=False)
    ],
    outputs=gr.Textbox(),
    title="Transformer Model Optimization Demo",
    description="Test quantization on DistilBERT for faster edge inference. Toggle quantization to see speed gains."
)

if __name__ == "__main__":
    demo.launch()