bert_punct_model

This model is a fine-tuned version of bert-large-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1454
  • F1: 0.8223
  • Precision: 0.8256
  • Recall: 0.8190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall
0.2214 0.0388 500 0.1982 0.7598 0.7509 0.7690
0.1839 0.0776 1000 0.1660 0.7803 0.7938 0.7672
0.1741 0.1164 1500 0.1612 0.7849 0.8155 0.7566
0.1546 0.1553 2000 0.1631 0.7884 0.7757 0.8015
0.1575 0.1941 2500 0.1598 0.7864 0.7841 0.7887
0.1729 0.2329 3000 0.1551 0.7886 0.8045 0.7734
0.1463 0.2717 3500 0.1480 0.7912 0.7970 0.7854
0.1379 0.3105 4000 0.1446 0.7938 0.7994 0.7883
0.1491 0.3493 4500 0.1470 0.7971 0.8206 0.7748
0.1384 0.3881 5000 0.1411 0.7972 0.8148 0.7803
0.1455 0.4270 5500 0.1394 0.8036 0.8210 0.7869
0.1397 0.4658 6000 0.1419 0.8068 0.8274 0.7872
0.1433 0.5046 6500 0.1407 0.7974 0.8271 0.7697
0.135 0.5434 7000 0.1359 0.8065 0.8292 0.7850
0.1411 0.5822 7500 0.1446 0.8030 0.8164 0.7901
0.1415 0.6210 8000 0.1450 0.7994 0.8003 0.7985
0.1379 0.6598 8500 0.1441 0.8017 0.7915 0.8120
0.1399 0.6986 9000 0.1328 0.8116 0.8354 0.7891
0.132 0.7375 9500 0.1357 0.8029 0.8168 0.7894
0.1355 0.7763 10000 0.1367 0.8100 0.8248 0.7956
0.1342 0.8151 10500 0.1367 0.8087 0.8153 0.8022
0.1292 0.8539 11000 0.1344 0.8088 0.8164 0.8015
0.1301 0.8927 11500 0.1323 0.8194 0.8303 0.8088
0.1282 0.9315 12000 0.1319 0.8111 0.8249 0.7978
0.1265 0.9703 12500 0.1367 0.8120 0.8202 0.8040
0.1156 1.0092 13000 0.1354 0.8108 0.8137 0.8080
0.1068 1.0480 13500 0.1375 0.8176 0.8163 0.8190
0.1074 1.0868 14000 0.1357 0.8146 0.8123 0.8168
0.1011 1.1256 14500 0.1332 0.8131 0.8141 0.8120
0.1054 1.1644 15000 0.1364 0.8152 0.8096 0.8208
0.1069 1.2032 15500 0.1368 0.8174 0.8195 0.8153
0.1069 1.2420 16000 0.1359 0.8183 0.8231 0.8135
0.1047 1.2809 16500 0.1286 0.8210 0.8268 0.8153
0.1032 1.3197 17000 0.1315 0.8116 0.8082 0.8150
0.1021 1.3585 17500 0.1327 0.8108 0.8082 0.8135
0.1003 1.3973 18000 0.1315 0.8162 0.8171 0.8153
0.0965 1.4361 18500 0.1339 0.8136 0.8214 0.8058
0.0966 1.4749 19000 0.1308 0.8162 0.8204 0.8120
0.1034 1.5137 19500 0.1354 0.8127 0.8227 0.8029
0.1007 1.5526 20000 0.1317 0.8150 0.8155 0.8146
0.1056 1.5914 20500 0.1299 0.8142 0.8232 0.8055
0.0987 1.6302 21000 0.1332 0.8215 0.8320 0.8113
0.1019 1.6690 21500 0.1314 0.8214 0.8341 0.8091
0.1046 1.7078 22000 0.1289 0.8184 0.8287 0.8084
0.0966 1.7466 22500 0.1321 0.8216 0.8333 0.8102
0.1003 1.7854 23000 0.1279 0.8191 0.8260 0.8124
0.105 1.8243 23500 0.1302 0.8158 0.8260 0.8058
0.0976 1.8631 24000 0.1303 0.8178 0.8214 0.8142
0.0965 1.9019 24500 0.1267 0.8185 0.8258 0.8113
0.0966 1.9407 25000 0.1275 0.8222 0.8240 0.8204
0.099 1.9795 25500 0.1273 0.8222 0.8319 0.8128
0.0733 2.0183 26000 0.1439 0.8210 0.8250 0.8172
0.0765 2.0571 26500 0.1418 0.8172 0.8177 0.8168
0.0708 2.0959 27000 0.1443 0.8174 0.8211 0.8139
0.073 2.1348 27500 0.1429 0.8209 0.8265 0.8153
0.0787 2.1736 28000 0.1380 0.8178 0.8191 0.8164
0.0672 2.2124 28500 0.1423 0.8177 0.8242 0.8113
0.0694 2.2512 29000 0.1422 0.8185 0.8222 0.8150
0.0715 2.2900 29500 0.1473 0.8190 0.8172 0.8208
0.0724 2.3288 30000 0.1412 0.8182 0.8152 0.8212
0.0718 2.3676 30500 0.1429 0.8192 0.8213 0.8172
0.071 2.4065 31000 0.1427 0.8254 0.8294 0.8215
0.0734 2.4453 31500 0.1495 0.8225 0.8241 0.8208
0.0733 2.4841 32000 0.1423 0.8200 0.8262 0.8139
0.0658 2.5229 32500 0.1447 0.8212 0.8287 0.8139
0.0704 2.5617 33000 0.1443 0.8215 0.8293 0.8139
0.0683 2.6005 33500 0.1447 0.8226 0.8252 0.8201
0.0678 2.6393 34000 0.1464 0.8236 0.8268 0.8204
0.0673 2.6782 34500 0.1450 0.8239 0.8292 0.8186
0.0679 2.7170 35000 0.1471 0.8190 0.8215 0.8164
0.068 2.7558 35500 0.1475 0.8207 0.8299 0.8117
0.0676 2.7946 36000 0.1466 0.8196 0.8225 0.8168
0.0686 2.8334 36500 0.1441 0.8225 0.8272 0.8179
0.0677 2.8722 37000 0.1464 0.8222 0.8235 0.8208
0.0714 2.9110 37500 0.1456 0.8200 0.8218 0.8182
0.0679 2.9499 38000 0.1465 0.8218 0.8249 0.8186
0.0666 2.9887 38500 0.1454 0.8223 0.8256 0.8190

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.4.0a0+f70bd71a48.nv24.06
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
2
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for thenlpresearcher/bert_punct_model

Finetuned
(164)
this model

Evaluation results