Vox-Profile
Collection
This collection includes the implementation of models described in the Vox-Profile benchmark. (https://arxiv.org/pdf/2505.14648).
•
14 items
•
Updated
•
2
This model includes the implementation of broader accent classification described in Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648)
The included English accents are: ['British Isles', 'North America', 'Other']
git clone git@github.com:tiantiaf0627/vox-profile-release.git
conda create -n vox_profile python=3.8
cd vox-profile-release
pip install -e .
# Load libraries
import torch
import torch.nn.functional as F
from src.model.accent.wavlm_accent import WavLMWrapper
# Find device
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# Load model from Huggingface
model = WavLMWrapper.from_pretrained("tiantiaf/wavlm-large-broader-accent").to(device)
model.eval()
# Label List
english_accent_list = [
'British Isles', 'North America', 'Other'
]
# Load data, here just zeros as the example, audio data should be 16kHz mono channel
data = torch.zeros([1, 16000]).float().to(device)
logits, embeddings = model(data, return_feature=True)
# Probability and output
accent_prob = F.softmax(logits, dim=1)
print(english_accent_list[torch.argmax(accent_prob).detach().cpu().item()])
@article{feng2025vox,
title={Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits},
author={Feng, Tiantian and Lee, Jihwan and Xu, Anfeng and Lee, Yoonjeong and Lertpetchpun, Thanathai and Shi, Xuan and Wang, Helin and Thebaud, Thomas and Moro-Velazquez, Laureano and Byrd, Dani and others},
journal={arXiv preprint arXiv:2505.14648},
year={2025}
}
Responsible use of the Model: the Model is released under Open RAIL license, and users should respect the privacy and consent of the data subjects, and adhere to the relevant laws and regulations in their jurisdictions in using our model.
❌ Out-of-Scope Use
Base model
microsoft/wavlm-large