Komi-Permyak - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Komi-Permyak Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.334x | 3.34 | 0.0990% | 351,368 |
| 16k | 3.681x | 3.68 | 0.1094% | 318,243 |
| 32k | 3.938x | 3.94 | 0.1170% | 297,461 |
| 64k | 4.188x π | 4.19 | 0.1244% | 279,684 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: ΠΠ΅Π±Π΅Π΄Π΅Π² ΠΠΈΡ
Π°ΠΈΠ» ΠΠΈΠΊΠΎΠ»Π°Π΅Π²ΠΈΡ β ΠΊΠΎΠΌΠΈ Π³ΠΈΠΆΠΈΡΡ. ΠΠΈΠΆΠΈΡ Π·ΡΡΡΠ½Π° ΠΌΠΎΠ·. ΠΠ»Π°Π½ΡΡΠΉ Π«ΡΡΡΡΡΠ½Π½ΡΠ· Π³ΠΈ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠ» Π΅Π± Π΅Π΄ Π΅Π² βΠΌΠΈΡ
Π°ΠΈΠ» βΠ½ΠΈΠΊΠΎΠ»Π°Π΅Π²ΠΈΡ ββ βΠΊΠΎΠΌΠΈ βΠ³ΠΈΠΆΠΈΡΡ . ... (+7 more) |
17 |
| 16k | βΠ»Π΅Π±Π΅Π΄ Π΅Π² βΠΌΠΈΡ
Π°ΠΈΠ» βΠ½ΠΈΠΊΠΎΠ»Π°Π΅Π²ΠΈΡ ββ βΠΊΠΎΠΌΠΈ βΠ³ΠΈΠΆΠΈΡΡ . βΠ³ΠΈΠΆΠΈΡ βΠ·ΡΡΡΠ½Π° ... (+5 more) |
15 |
| 32k | βΠ»Π΅Π±Π΅Π΄Π΅Π² βΠΌΠΈΡ
Π°ΠΈΠ» βΠ½ΠΈΠΊΠΎΠ»Π°Π΅Π²ΠΈΡ ββ βΠΊΠΎΠΌΠΈ βΠ³ΠΈΠΆΠΈΡΡ . βΠ³ΠΈΠΆΠΈΡ βΠ·ΡΡΡΠ½Π° βΠΌΠΎΠ· ... (+4 more) |
14 |
| 64k | βΠ»Π΅Π±Π΅Π΄Π΅Π² βΠΌΠΈΡ
Π°ΠΈΠ» βΠ½ΠΈΠΊΠΎΠ»Π°Π΅Π²ΠΈΡ ββ βΠΊΠΎΠΌΠΈ βΠ³ΠΈΠΆΠΈΡΡ . βΠ³ΠΈΠΆΠΈΡ βΠ·ΡΡΡΠ½Π° βΠΌΠΎΠ· ... (+4 more) |
14 |
Sample 2: Annona asplundiana () β Π±ΡΠ΄ΠΌΠ°ΡΡΡΠ·Π»Σ§Π½ Π°Π½Π½ΠΎΠ½Π° ΠΊΠΎΡΡΡΠΈΡΡ Π°Π½Π½ΠΎΠ½Π° ΡΠ²ΡΡΡΡΠ½ ΡΠΎΡΡΡ Π²ΠΈΠ΄. Π...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βannona βasp l und iana β() ββ βΠ±ΡΠ΄ΠΌΠ°ΡΡΡΠ·Π»Σ§Π½ βΠ°Π½Π½ΠΎΠ½Π° βΠΊΠΎΡΡΡΠΈΡΡ ... (+9 more) |
19 |
| 16k | βannona βaspl und iana β() ββ βΠ±ΡΠ΄ΠΌΠ°ΡΡΡΠ·Π»Σ§Π½ βΠ°Π½Π½ΠΎΠ½Π° βΠΊΠΎΡΡΡΠΈΡΡ βΠ°Π½Π½ΠΎΠ½Π° ... (+8 more) |
18 |
| 32k | βannona βasplundiana β() ββ βΠ±ΡΠ΄ΠΌΠ°ΡΡΡΠ·Π»Σ§Π½ βΠ°Π½Π½ΠΎΠ½Π° βΠΊΠΎΡΡΡΠΈΡΡ βΠ°Π½Π½ΠΎΠ½Π° βΡΠ²ΡΡΡΡΠ½ βΡΠΎΡΡΡ ... (+6 more) |
16 |
| 64k | βannona βasplundiana β() ββ βΠ±ΡΠ΄ΠΌΠ°ΡΡΡΠ·Π»Σ§Π½ βΠ°Π½Π½ΠΎΠ½Π° βΠΊΠΎΡΡΡΠΈΡΡ βΠ°Π½Π½ΠΎΠ½Π° βΡΠ²ΡΡΡΡΠ½ βΡΠΎΡΡΡ ... (+6 more) |
16 |
Sample 3: ΠΠ΅ΠΏΡΠ°ΠΌΡΠΊΠ°Π½Π½Π΅Π· () - Π·Π΅ΠΏΡΠ° ΠΏΠΎΠ΄Π° Π‘ΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° ΠΡΠ½Π²ΡΠ² Π·Π΅ΠΏΡΠ°ΠΌΡΠΊΠ°Π½Ρ (Notoryctes typhlop...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠ·Π΅ΠΏΡΠ° ΠΌΡ ΠΊΠ°Π½Π½Π΅Π· β() β- βΠ·Π΅ΠΏΡΠ° βΠΏΠΎΠ΄Π° βΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° βΠ»ΡΠ½Π²ΡΠ² βΠ·Π΅ΠΏΡΠ° ... (+27 more) |
37 |
| 16k | βΠ·Π΅ΠΏΡΠ° ΠΌΡΠΊΠ°Π½Π½Π΅Π· β() β- βΠ·Π΅ΠΏΡΠ° βΠΏΠΎΠ΄Π° βΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° βΠ»ΡΠ½Π²ΡΠ² βΠ·Π΅ΠΏΡΠ° ΠΌΡ ... (+20 more) |
30 |
| 32k | βΠ·Π΅ΠΏΡΠ°ΠΌΡΠΊΠ°Π½Π½Π΅Π· β() β- βΠ·Π΅ΠΏΡΠ° βΠΏΠΎΠ΄Π° βΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° βΠ»ΡΠ½Π²ΡΠ² βΠ·Π΅ΠΏΡΠ°ΠΌΡΠΊΠ°Π½Ρ β( notoryctes ... (+13 more) |
23 |
| 64k | βΠ·Π΅ΠΏΡΠ°ΠΌΡΠΊΠ°Π½Π½Π΅Π· β() β- βΠ·Π΅ΠΏΡΠ° βΠΏΠΎΠ΄Π° βΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° βΠ»ΡΠ½Π²ΡΠ² βΠ·Π΅ΠΏΡΠ°ΠΌΡΠΊΠ°Π½Ρ β( notoryctes ... (+8 more) |
18 |
Key Findings
- Best Compression: 64k achieves 4.188x compression
- Lowest UNK Rate: 8k with 0.0990% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 2,251 | 11.14 | 6,246 | 30.0% | 65.4% |
| 2-gram | Subword | 688 π | 9.43 | 3,126 | 40.6% | 95.6% |
| 3-gram | Word | 2,425 | 11.24 | 7,894 | 31.4% | 64.7% |
| 3-gram | Subword | 5,502 | 12.43 | 26,121 | 14.0% | 50.2% |
| 4-gram | Word | 3,845 | 11.91 | 14,635 | 29.5% | 57.3% |
| 4-gram | Subword | 22,040 | 14.43 | 109,182 | 8.3% | 30.1% |
| 5-gram | Word | 2,942 | 11.52 | 11,597 | 33.2% | 61.2% |
| 5-gram | Subword | 45,190 | 15.46 | 199,483 | 6.7% | 24.3% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΡΡΠΉ ΡΠ» |
1,101 |
| 2 | ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠΈ ΠΊΠΎΠΌΠΈ |
907 |
| 3 | Π½ΠΈΠΌ ΠΉΡΠ»ΡΡΡ |
885 |
| 4 | Π΄Π° Π±ΡΡ |
778 |
| 5 | ΠΊΠΎΡΡΡΠΈΡΡ Π±ΡΠ΄ΠΌΠ°ΡΡΡΠ· |
768 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π΄Π° Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° |
688 |
| 2 | ΠΏΠ΅ΡΠ΅ΠΌ Π»Π°Π΄ΠΎΡΠΈΡΡ ΠΊΠΎΠΌΠΈ |
648 |
| 3 | Π½ΠΈΠΌ ΠΉΡΠ»ΡΡΡ Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ |
642 |
| 4 | Π»Π°Π΄ΠΎΡΠΈΡΡ ΠΊΠΎΠΌΠΈ ΠΊΡΡΡΡΠ½ |
619 |
| 5 | Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° |
618 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π΄Π° Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° |
618 |
| 2 | ΠΏΠ΅ΡΠ΅ΠΌ Π»Π°Π΄ΠΎΡΠΈΡΡ ΠΊΠΎΠΌΠΈ ΠΊΡΡΡΡΠ½ |
613 |
| 3 | ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° ΠΎΡΠ΄ΡΠ° Π»Π°Π½Π΄ΡΠ°ΡΡΡΡΠ· |
557 |
| 4 | Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° ΠΎΡΠ΄ΡΠ° |
543 |
| 5 | ΠΏΠ΅ΡΠΌΡΡΠΊΠΈΠΉ Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΠΎΠΊΡΡΠ³ ΠΌΠΎΡΠΊΠ²Π° |
497 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° ΠΎΡΠ΄ΡΠ° Π»Π°Π½Π΄ΡΠ°ΡΡΡΡΠ· |
543 |
| 2 | Π΄Π° Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° ΠΎΡΠ΄ΡΠ° |
543 |
| 3 | ΠΊΠΎΠΌΠΈ ΠΏΠ΅ΡΠΌΡΡΠΊΠΈΠΉ Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΠΎΠΊΡΡΠ³ ΠΌΠΎΡΠΊΠ²Π° |
497 |
| 4 | ΠΏΠ΅ΡΠΌΡΡΠΊΠΈΠΉ Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΠΎΠΊΡΡΠ³ ΠΌΠΎΡΠΊΠ²Π° Π»Π΅Π½ΠΈΠ½Π³ΡΠ°Π΄ |
497 |
| 5 | ΠΈΡΡΠΎΡΠΈΡ ΠΎΡΠΈΡ Π΄Π° Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° |
467 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | . _ |
42,699 |
| 2 | _ ΠΊ |
35,843 |
| 3 | Π° _ |
26,811 |
| 4 | , _ |
26,348 |
| 5 | a _ |
25,171 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ ΠΊ ΠΎ |
13,371 |
| 2 | Ρ Ρ _ |
9,563 |
| 3 | i s _ |
8,088 |
| 4 | i a _ |
7,916 |
| 5 | ΠΊ ΠΎ ΠΌ |
7,738 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ ΠΊ ΠΎ ΠΌ |
7,266 |
| 2 | ΠΊ ΠΎ ΠΌ ΠΈ |
7,115 |
| 3 | _ Π΄ Π° _ |
5,888 |
| 4 | ΠΈ Ρ Ρ _ |
5,139 |
| 5 | ΠΎ ΠΌ ΠΈ _ |
4,261 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ ΠΊ ΠΎ ΠΌ ΠΈ |
6,959 |
| 2 | ΠΊ ΠΎ ΠΌ ΠΈ _ |
4,192 |
| 3 | Ρ Π° ΠΉ ΠΎ Π½ |
3,366 |
| 4 | Ρ ΠΈ Ρ Ρ _ |
3,221 |
| 5 | _ Ρ Π° ΠΉ ΠΎ |
3,073 |
Key Findings
- Best Perplexity: 2-gram (subword) with 688
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~24% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.6021 | 1.518 | 3.33 | 64,076 | 39.8% |
| 1 | Subword | 1.2840 | 2.435 | 10.66 | 598 | 0.0% |
| 2 | Word | 0.1331 | 1.097 | 1.27 | 212,941 | 86.7% |
| 2 | Subword | 1.1237 | 2.179 | 7.04 | 6,371 | 0.0% |
| 3 | Word | 0.0468 | 1.033 | 1.09 | 268,517 | 95.3% |
| 3 | Subword | 0.8991 | 1.865 | 4.10 | 44,806 | 10.1% |
| 4 | Word | 0.0247 π | 1.017 | 1.05 | 290,625 | 97.5% |
| 4 | Subword | 0.5751 | 1.490 | 2.34 | 183,679 | 42.5% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
ΠΊΠΎΠΌΠΈ ΠΊΡΡΡΡΠ½ ΡΡΡΠ²Π° ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π» ΡΠ°ΠΉΠΎΠ½ ΠΏΠΎΠ½Π΄Π° ΡΠΎΠΌΠΎΡΡΡ Π½Σ§Π±Σ§ΡΣ§ Π°ΡΡΠΈΡ Π±Π°ΠΈΡΠ°Π½ ΠΊΡΠ²Π²Π΅Π· Π²Π°Ρ Ρ Π°Π½ΡΡ ΠΌΠ°Π½ΡΠΈΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ·Ρ...Π΄Π° Π½ΠΈΠΏΠΏΠΎΠ½ sakhalin Π³Π»Π΅Π½ ΠΊΣ§Π· picea rubens anathallis jesupiorum anathallis abbreviata hopper a rich e...ΠΈ ΠΊ ΠΆΠ°ΠΊΠΎΠ²Π° Π±ΠΈΠ°ΡΠΌΠΈΡ Π² Π² Π°ΠΌΠ΅ΡΠΈΠΊΠ°ΠΈΡΡ sylvilagus graysoni ΠΊΓΆΡ lepus ΡΠ²ΡΡΡΠ²ΡΠ² indolagus Ρ Π°ΠΉΠ½Π°Π½Ρ ΠΊΓΆΡ lepus
Context Size 2:
ΡΡΠΉ ΡΠ» ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½Π°Ρ ΠΌΠΈΡ ΡΡΠΉ ΡΠ» ΠΎΠ·Π΅ΡΠ½Π°Ρ ΡΠ΄ΠΆΠ°Π»Π°Π½ ΡΡΠΉ ΡΠ» ΡΠ΅Π²Π΅ΡΠ½Π°Ρ ΡΠ΄ΠΆΡΡ ΡΡΠΉ Π΄Π° ΡΠΎΠ²Π΅Ρ ΡΡΠΉ ΡΠ»ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠΈ ΠΊΠΎΠΌΠΈ ΠΌ Π΄ΡΠΎΡΠ° isbn ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ° ΠΊΠΎΠΌΠΈ ΡΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡ Π² 3 Ρ ΡΠΎΠΌΠ°Ρ ΡΡΠΊΡΡΠ²ΠΊΠ°Ρ ΠΊΠΎΠΌΠΈ ΠΊΠ½ ΠΈΠ·Π΄ Π²ΠΎΠ½ΠΈΠΌ ΠΉΡΠ»ΡΡΡ ΠΎΡΡΠ±ΡΠ½ ΠΈ ΡΠ°Π΄ΠΎΡΡΠ΅Π² ΠΏΠ°Π²Π΅Π» ΠΌΠΈΡ Π°ΠΉΠ»ΠΎΠ²ΠΈΡ ΡΡΣ§ΡΡΡ ΠΏΠΎΡΠ°Π΄ ΠΌΠ΅ΡΡΠ°ΡΠ½ Π²Σ§Π»ΡΡΣ§ ΡΠ΄ΠΆΡΡΡΡ ΡΠ΄ΠΆΡΡ ΡΠ±Π±Π΅Π· ΠΊΡΡΣ§Π½ ...
Context Size 3:
Π΄Π° Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° ΠΎΡΠ΄ΡΠ° Π»Π°Π½Π΄ΡΠ°ΡΡΡΡΠ· ΠΊΠΎΠΌΠΈ ΠΏΠ΅ΡΠΌΡΡΠΊΠΈΠΉ Π°Π²ΡΠΎΠ½ΠΎΠΌΠ½ΡΠΉ ΠΎΠΊΡΡΠ³ Π½Π° ΡΡΠ±Π΅ΠΆΠ΅ Π²Π΅ΠΊΠΎΠ² ΠΊΡΠ΄ΡΠΌΠΊΠ°Ρ isbn ΠΊ...ΠΏΠ΅ΡΠ΅ΠΌ Π»Π°Π΄ΠΎΡΠΈΡΡ ΠΊΠΎΠΌΠΈ ΠΊΡΡΡΡΠ½ ΠΊΣ§ΡΠ»Π°Π΄ΠΎΡ ΡΠ°ΠΉΠΎΠ½ΡΡΡ ΠΊΣ§Ρ ΠΏΠΎΡΠ°Π΄ΠΌΡΡΠ½ ΡΡΣ§ΡΠΈΠΊ Π³ΡΠ΅Π·Π΄ Π΄Π΅ΡΠ΅Π²Π½Ρ ΠΎΠ΄Π·ΠΆΡΠΊ ΡΠ°ΡΣ§Π½ Π²Σ§Π»Ρ ΡΡ...Π½ΠΈΠΌ ΠΉΡΠ»ΡΡΡ Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ ΡΡΠΉΠ΅Π· ΠΈΡΡΠΎΡΠΈΡ ΠΎΡΠΈΡ Π΄Π° Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° ΠΎΡΠ΄ΡΠ° Π»Π°Π½Π΄ΡΠ°ΡΡΡΡΠ· Π°ΡΠ°Π½Π°ΡΡΠ΅Π² Π° ΠΏ ΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈΡ...
Context Size 4:
Π΄Π° Π±ΡΡ ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° ΠΎΡΠ΄ΡΠ° Π»Π°Π½Π΄ΡΠ°ΡΡΡΡΠ· Π°ΡΠ°Π½Π°ΡΡΠ΅Π² Π° ΠΏ ΡΠΎΠΏΠΎΠ½ΠΈΠΌΠΈΡ ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠΈ ΠΊΠΎΠΌΠΈ ΡΡΠΊΡΡΠ²ΠΊΠ°Ρ ΠΊΠΎΠΌΠΈ ΠΊΠ½ ΠΈΠ·Π΄ Π²...ΠΏΠ΅ΡΠ΅ΠΌ Π»Π°Π΄ΠΎΡΠΈΡΡ ΠΊΠΎΠΌΠΈ ΠΊΡΡΡΡΠ½ ΠΈΠ½ΡΠ²Π°Σ§ ΡΡΡΠ½ ΠΈΡΡΠ²Π»Σ§Π½ ΡΡΠ»ΡΠ³Π° Π²ΠΎΠΆ ΡΡΡΠ»Σ§Π½ ΠΊΡΠ·ΡΡΡ ΠΊΠΌ Π±Π°ΡΡΠ΅ΠΉΠ½ΡΡ ΠΊΠΌ ΡΠΆΠ΄Π° Π²Π°ΡΡ ΠΉΡ...ΠΊΡΠ»ΡΡΡΡΠ° Π΄Π° ΠΎΡΠ΄ΡΠ° Π»Π°Π½Π΄ΡΠ°ΡΡΡΡΠ· ΠΊΠΎΠΌΠΈ ΠΏΠ΅ΡΠΌΡΡΠΊΠΈΠΉ Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΠΎΠΊΡΡΠ³ ΠΌΠΎΡΠΊΠ²Π° Π»Π΅Π½ΠΈΠ½Π³ΡΠ°Π΄ ΡΡΡΡΡΡΠ½Π½ΡΠ· ΡΠ°ΠΉΠΎΠ½
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_ΠΊΣ§ΡΠ΅Π²ΠΎΠΌΠΈΠ½,219_pΠ°.)_buna_Π»ΡΠ½._thΠΎΡΠ½Ρ,_veranderia
Context Size 2:
._β_ΡΡΠ²ΡΡΠ²_Π²ΡΠ»Ρ_Ρ_ΠΊΠΎΠ»ΠΈΡ_(fracencicΠ°_250_10,0_67.69,
Context Size 3:
_ΠΊΠΎΠΌΠΈ-ΠΏΠ΅ΡΠΌΡ,_26:_5ΡΡ_ΠΌΡΡΠ΅Π²_ΡΡΡΠ»ΡΡΣ§_ΠΊis_angrandropedia_
Context Size 4:
_ΠΊΠΎΠΌΠΈ-ΠΏΠ΅ΡΠΌΡΡΠΊΠΈΠΉ_ΡΠ·ΡΠΊΠΎΠΌΠΈ_ΠΊΠ½ΠΈΠΆΠ½ΠΎΠ΅_ΠΏΠΎΠ»ΠΎΠ²Ρ_Π΄Π°_Π±ΡΡ_ΠΊΡΠ»Π°Ρ_Π΅ΡΡΠΎΠ²
Key Findings
- Best Predictability: Context-4 (word) with 97.5% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (183,679 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 22,928 |
| Total Tokens | 340,087 |
| Mean Frequency | 14.83 |
| Median Frequency | 3 |
| Frequency Std Dev | 91.92 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΠΊΠΎΠΌΠΈ | 6,643 |
| 2 | Π΄Π° | 5,961 |
| 3 | ΠΈ | 2,497 |
| 4 | luer | 2,296 |
| 5 | ΡΡΠΉ | 2,096 |
| 6 | ΠΊΠΎΡΡΡΠΈΡΡ | 2,060 |
| 7 | j | 1,805 |
| 8 | Π° | 1,758 |
| 9 | isbn | 1,579 |
| 10 | ΠΎΡΠΈΡ | 1,559 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΡΡΡΠ°Ρ | 2 |
| 2 | Π²ΠΈΠ΄Π·Σ§ΡΡΣ§Π³ | 2 |
| 3 | Π°ΡΡΠΈΠΌΠΈΠ»ΠΈΡΡΠΉΡΡΡΣ§ | 2 |
| 4 | Π±Π΅ΡΡΠ°ΡΠ°Π±ΠΈΡΠΈΡΡ | 2 |
| 5 | ΠΌΠΎΠ»Π΄Π°Π²Π°Π½Π΅Ρ | 2 |
| 6 | ΡΡΡΡΠΊΣ§ΠΉΠ΅Π· | 2 |
| 7 | ΡΡΡΠΈΠ½ΡΠΊΣ§ΠΉ | 2 |
| 8 | ΡΡΠ½ΠΎΡΠ·ΡΡΠ½Σ§ΠΉ | 2 |
| 9 | ΡΡΠΎΠΉΠΊΠΎΡΡΡΡΡ | 2 |
| 10 | ΠΏΡΡΡΡΡΠ½Ρ | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.0748 |
| RΒ² (Goodness of Fit) | 0.991898 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 29.1% |
| Top 1,000 | 63.8% |
| Top 5,000 | 83.7% |
| Top 10,000 | 91.2% |
Key Findings
- Zipf Compliance: RΒ²=0.9919 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 29.1% of corpus
- Long Tail: 12,928 words needed for remaining 8.8% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.5442 π | 0.3839 | N/A | N/A |
| mono_64d | 64 | 0.1977 | 0.3890 | N/A | N/A |
| mono_128d | 128 | 0.0304 | 0.3721 | N/A | N/A |
| aligned_32d | 32 | 0.5442 | 0.3825 | 0.0160 | 0.1340 |
| aligned_64d | 64 | 0.1977 | 0.3794 | 0.0320 | 0.1740 |
| aligned_128d | 128 | 0.0304 | 0.3783 | 0.0520 | 0.2440 |
Key Findings
- Best Isotropy: mono_32d with 0.5442 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.3809. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 5.2% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 1.522 | High formulaic/idiomatic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-ΠΊ |
ΠΊΠ°ΡΠΏΠΎΠΌ, ΠΊΡΠ²ΡΡΡΡΠ½, ΠΊΠ°Π³ΡΡΠ³ΡΠ½ |
-Ρ |
ΡΠ΅Π»Π΅Π·Π½ΠΈ, ΡΡΠ΅ΡΠ΅, ΡΠ°ΡΠΈΠ΄Π·Σ§Π½ |
-ΠΏ |
ΠΏΡΡΠ½Ρ, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡΠ½, ΠΏΠΎΡΠ°Π΄Π΄ΡΠ· |
-ΠΌ |
ΠΌΠ°ΠΉΠΊΠΎΠΏ, ΠΌΠΎΡΡΡΡ, ΠΌΠΈΡΡΠΎΠ²ΡΠΈΡΡ |
-Π² |
Π²Π΅Π²ΡΡΡΣ§ΡΠ°Σ§ΡΡ, Π²ΠΈΡ, Π²ΡΠ·Π°Π»Π½Ρ |
-Π° |
Π°ΡΡΠ°ΠΌΠΎΠΌΡΠΌ, Π°Π·ΠΈΡΡΡ, Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π»Π΅Π· |
-ΠΊΠΎ |
ΠΊΠΎΡΠΈΠ½ΡΠ°, ΠΊΠΎΠ»ΠΈΡΣ§, ΠΊΠΎΡΠΌΠ° |
-s |
spiculaea, schaueria, serapias |
Productive Suffixes
| Suffix | Examples |
|---|---|
-a |
spiculaea, proctoria, pileata |
-Π½ |
ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡΠ½, ΡΠ½Π°Σ§Π½, Π½ΡΡΡΠΈΠ½ΡΠ½ |
-Π° |
ΠΎΠΊΠΎΡΠ°, Π»ΡΠΌΠ΄ΠΎΡΡΠ°ΡΠ°, ΠΏΠΎΠ΄ΠΎΡΠΎΠ²Π° |
-s |
ursavus, cruciformis, cararensis |
-Ρ |
ΠΏΠ°Π½ΡΠ°ΡΡ, Π²Π΅Π²ΡΡΡΣ§ΡΠ°Σ§ΡΡ, Π±ΠΎΠ»ΠΈΠ²ΠΈΡΠΈΡΡ |
-is |
cruciformis, cararensis, atabapensis |
-ΡΠ½ |
ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡΠ½, Π½ΡΡΡΠΈΠ½ΡΠ½, ΠΊΡΠ²ΡΡΡΡΠ½ |
-ΡΡ |
ΠΏΠ°Π½ΡΠ°ΡΡ, Π²Π΅Π²ΡΡΡΣ§ΡΠ°Σ§ΡΡ, Π±ΠΎΠ»ΠΈΠ²ΠΈΡΠΈΡΡ |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
anth |
2.28x | 17 contexts | euanthe, anthrax, calanthe |
alli |
2.17x | 19 contexts | dalli, ballii, allies |
Π°Π΄ΠΎΡ |
1.88x | 22 contexts | Π»Π°Π΄ΠΎΡ, Π²Π°Π΄ΠΎΡ, Π»Π°Π΄ΠΎΡΣ§ |
ΡΠ΅Π·Π΄ |
1.97x | 15 contexts | Π³ΡΠ΅Π·Π΄, Π³ΡΠ΅Π·Π΄Σ§, Π³ΡΠ΅Π·Π΄Π°Ρ |
ΠΎΡΠ°Π΄ |
1.99x | 14 contexts | ΠΏΠΎΡΠ°Π΄, ΠΏΠΎΡΠ°Π΄Σ§, ΠΏΠΎΡΠ°Π΄ΡΠ½ |
Π½Π½ΡΠ· |
1.67x | 24 contexts | ΠΈΠ½Π½ΡΠ·, Π²ΠΎΠ½Π½ΡΠ·, Π»ΡΠ½Π½ΡΠ· |
ensi |
2.32x | 9 contexts | pensilis, loxensis, sinensis |
Π°ΠΉΠΎΠ½ |
1.86x | 16 contexts | ΡΠ°ΠΉΠΎΠ½, ΡΠ°ΠΉΠΎΠ½Π°, ΡΠ°ΠΉΠΎΠ½Σ§ |
Π²ΡΠ»Ρ |
1.84x | 15 contexts | Π²ΡΠ»ΡΠ½, Π²ΡΠ»ΡΡ, Π²ΡΠ»ΡΠ½Π° |
ΠΏΠΎΡΠ° |
1.99x | 10 contexts | ΠΏΠΎΡΠ°Π΄, ΡΠΏΠΎΡΠ°, ΠΏΠΎΡΠ°Π΄Σ§ |
ΡΡΡΠ· |
1.60x | 18 contexts | Π»ΠΈΡΡΡΠ·, ΠΏΠΎΡΡΡΠ·, ΠΌΡΡΡΡΠ· |
Π²ΡΡΡ |
1.83x | 12 contexts | ΡΠ²ΡΡΡ, ΡΠ²ΡΡΡΣ§, Π²ΡΠ²ΡΡΡ |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-s |
-a |
83 words | sertifera, sladeara |
-ΠΊ |
-Π½ |
73 words | ΠΊΡΠ²ΡΠ°Π½, ΠΊΠΎΡΠ΅ΡΡΠ½ |
-ΠΊ |
-Π° |
69 words | ΠΊΡΠ»Σ§ΠΌΠ°, ΠΊΡΠΏΡΣ§ΡΠΊΠ° |
-ΠΏ |
-Π½ |
57 words | ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ°ΡΠ½, ΠΏΠΎΠ»ΡΡΠ°ΡΠ½ |
-Ρ |
-Π° |
55 words | ΡΠ°Π²ΠΊΠΈΠ½Π°, ΡΡΡΡΠΊΠ° |
-ΠΊ |
-Ρ |
51 words | ΠΊΠ°Π΄Π΄ΡΠ·ΡΡΠ½Ρ, ΠΊΠ°ΡΠΈΡΡ |
-Π² |
-Π½ |
49 words | Π²Π΅Π²ΡΣ§ΡΣ§Π½, Π²ΠΎΠ»Π΅ΠΉΠ±ΠΎΠ»Σ§Π½ |
-ΠΏ |
-Π° |
49 words | ΠΏΠΈΡΠ΅Π½Π°, ΠΏΠ΅ΡΣ§ΠΌΠ° |
-s |
-s |
47 words | susanensis, sloths |
-ΠΌ |
-Π° |
47 words | ΠΌΡΠ»Π²Π°, ΠΌΠ°ΡΠΊΡΠ° |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| carruthersii | carruther-s-ii |
7.5 | s |
| ΠΈΠ½ΡΡΠΈΡΡΡΠ°Ρ | ΠΈΠ½ΡΡΠΈΡΡΡ-Π°-Ρ |
7.5 | Π° |
| christieara | christie-a-ra |
7.5 | a |
| ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΠ°ΡΡ | ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΠ°-Ρ-Ρ |
7.5 | Ρ |
| Π²ΡΠ»ΡΠ½Π°Π½Π°Ρ | Π²ΡΠ»ΡΠ½Π°-Π½Π°-Ρ |
6.0 | Π²ΡΠ»ΡΠ½Π° |
| Π°ΠΌΠ΅ΡΠΈΠΊΠ°Σ§ΡΡ | Π°ΠΌΠ΅ΡΠΈΠΊΠ°-Σ§-ΡΡ |
6.0 | Π°ΠΌΠ΅ΡΠΈΠΊΠ° |
| ΡΠ½ΡΣ§ΡΡΣ§Π½Ρ | ΡΠ½ΡΣ§ΡΡΣ§-Π½Ρ |
4.5 | ΡΠ½ΡΣ§ΡΡΣ§ |
| ΡΡΡΡΠΊΡΡΡΠ°ΡΠ· | ΡΡΡΡΠΊΡΡΡΠ°-ΡΠ· |
4.5 | ΡΡΡΡΠΊΡΡΡΠ° |
| ΠΎΠΊΡΡΠΆΠΊΠΎΠΌΡΠ½ | ΠΎΠΊΡΡΠΆΠΊΠΎΠΌ-ΡΠ½ |
4.5 | ΠΎΠΊΡΡΠΆΠΊΠΎΠΌ |
| ΠΊΠΎΠ»ΡΡΡΣ§ΠΌΠ° | ΠΊΠΎΠ»ΡΡΡΣ§ΠΌ-Π° |
4.5 | ΠΊΠΎΠ»ΡΡΡΣ§ΠΌ |
| Σ§ΡΡΠ²ΡΡΣ§ΠΌΡΠ½ | Σ§ΡΡΠ²ΡΡΣ§ΠΌ-ΡΠ½ |
4.5 | Σ§ΡΡΠ²ΡΡΣ§ΠΌ |
| pacificum | pacific-um |
4.5 | pacific |
| ΠΊΠΎΠΌΠΌΡΠ½Π°ΡΠΎΠ² | ΠΊΠΎΠΌΠΌΡΠ½Π°Ρ-ΠΎΠ² |
4.5 | ΠΊΠΎΠΌΠΌΡΠ½Π°Ρ |
| anderssonii | andersson-ii |
4.5 | andersson |
| ΡΡΡΠ²ΡΠ²Π»Π°Π½ΡΡΠ½ | ΡΡΡΠ²ΡΠ²Π»Π°Π½Ρ-ΡΠ½ |
4.5 | ΡΡΡΠ²ΡΠ²Π»Π°Π½Ρ |
6.6 Linguistic Interpretation
Automated Insight: The language Komi-Permyak shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.19x) |
| N-gram | 2-gram | Lowest perplexity (688) |
| Markov | Context-4 | Highest predictability (97.5%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-10 08:23:20



















