Improve model card: Add intro and fix GitHub link
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -2,6 +2,9 @@
|
|
| 2 |
license: cc-by-nc-4.0
|
| 3 |
pipeline_tag: image-text-to-text
|
| 4 |
---
|
|
|
|
|
|
|
|
|
|
| 5 |
<p align="center">
|
| 6 |
<a href="https://arxiv.org/abs/2512.02924"><img src="https://img.shields.io/badge/📄%20arXiv-2512.02924-b31b1b?style=for-the-badge" alt="arXiv"></a>
|
| 7 |
<a href="https://discord.com/invite/nexa-ai"><img src="https://img.shields.io/badge/💬%20Discord-Nexa%20AI-5865F2?style=for-the-badge" alt="Discord"></a>
|
|
@@ -9,7 +12,7 @@ pipeline_tag: image-text-to-text
|
|
| 9 |
</p>
|
| 10 |
|
| 11 |
<p align="center">
|
| 12 |
-
<a href="https://github.com/NexaAI/nexa-sdk
|
| 13 |
<a href="https://nexa.ai/solution/intelligent-cockpit"><b>📄 Webpage</b></a>
|
| 14 |
</p>
|
| 15 |
|
|
@@ -103,10 +106,10 @@ AutoNeural is an NPU-native vision–language model co-designed for integer-only
|
|
| 103 |
|
| 104 |
AutoNeural follows a four-stage curriculum on large-scale multimodal data plus a proprietary automotive dataset.
|
| 105 |
|
| 106 |
-
1.
|
| 107 |
-
2.
|
| 108 |
-
3.
|
| 109 |
-
4.
|
| 110 |
|
| 111 |
---
|
| 112 |
|
|
|
|
| 2 |
license: cc-by-nc-4.0
|
| 3 |
pipeline_tag: image-text-to-text
|
| 4 |
---
|
| 5 |
+
|
| 6 |
+
The AutoNeural-VL-1.5B model is an NPU-native vision-language model for in-car assistants, presented in the paper [AutoNeural: Co-Designing Vision-Language Models for NPU Inference](https://arxiv.org/abs/2512.02924).
|
| 7 |
+
|
| 8 |
<p align="center">
|
| 9 |
<a href="https://arxiv.org/abs/2512.02924"><img src="https://img.shields.io/badge/📄%20arXiv-2512.02924-b31b1b?style=for-the-badge" alt="arXiv"></a>
|
| 10 |
<a href="https://discord.com/invite/nexa-ai"><img src="https://img.shields.io/badge/💬%20Discord-Nexa%20AI-5865F2?style=for-the-badge" alt="Discord"></a>
|
|
|
|
| 12 |
</p>
|
| 13 |
|
| 14 |
<p align="center">
|
| 15 |
+
<a href="https://github.com/NexaAI/nexa-sdk"><b>🌟 Github</b></a> |
|
| 16 |
<a href="https://nexa.ai/solution/intelligent-cockpit"><b>📄 Webpage</b></a>
|
| 17 |
</p>
|
| 18 |
|
|
|
|
| 106 |
|
| 107 |
AutoNeural follows a four-stage curriculum on large-scale multimodal data plus a proprietary automotive dataset.
|
| 108 |
|
| 109 |
+
1. **Image–text alignment.** Freeze vision and language backbones; train only the projector on image–caption pairs to learn basic visual grounding.
|
| 110 |
+
2. **General visual understanding.** Unfreeze the full model and train on broad VQA-style tasks (object/scene understanding, basic reasoning) from the Infinity-MM dataset to build strong general multimodal capability.
|
| 111 |
+
3. **Instruction tuning.** Continue training on diverse instruction-following data (documents, charts, OCR, multi-turn dialogue, specialized domains) using a mixture of task weights for balanced performance.
|
| 112 |
+
4. **Automotive domain finetuning.** Finetune on ~200k curated cockpit samples (AI Sentinel, Greeter, Car Finder, Safety when getting on/off) plus high-quality synthetic data, with an NPU-aware recipe that combines quantization-aware training, mixed-precision constraints, and calibration to keep post-quantization drift low on real hardware.
|
| 113 |
|
| 114 |
---
|
| 115 |
|