|
|
!pip install sentencepiece |
|
|
import sentencepiece as spm |
|
|
import os, json, numpy as np, tensorflow as tf |
|
|
from tensorflow.keras import layers, Model |
|
|
import requests |
|
|
from tensorflow import keras |
|
|
from tensorflow.keras import layers |
|
|
import tensorflow.keras.backend as K |
|
|
|
|
|
print('1') |
|
|
tf.get_logger().setLevel("ERROR") |
|
|
SEED = 42 |
|
|
tf.random.set_seed(SEED) |
|
|
np.random.seed(SEED) |
|
|
|
|
|
|
|
|
try: |
|
|
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local") |
|
|
tf.tpu.experimental.initialize_tpu_system(resolver) |
|
|
strategy = tf.distribute.TPUStrategy(resolver) |
|
|
print("โ
TPU ์ด๊ธฐํ ์๋ฃ:", resolver.cluster_spec().as_dict()) |
|
|
on_tpu = True |
|
|
|
|
|
except Exception as e: |
|
|
print("โ ๏ธ TPU ๋ฏธ์ฌ์ฉ, GPU/CPU๋ก ์งํ:", e) |
|
|
strategy = tf.distribute.get_strategy() |
|
|
on_tpu = False |
|
|
|
|
|
|
|
|
from tensorflow.keras import mixed_precision |
|
|
policy = mixed_precision.Policy("mixed_bfloat16" if on_tpu else "float32") |
|
|
mixed_precision.set_global_policy(policy) |
|
|
print("โ
Mixed precision:", policy) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def download_file(url, save_path): |
|
|
r = requests.get(url, stream=True) |
|
|
r.raise_for_status() |
|
|
with open(save_path, "wb") as f: |
|
|
for chunk in r.iter_content(8192*2): |
|
|
f.write(chunk) |
|
|
print(f"โ
{save_path} ์ ์ฅ๋จ") |
|
|
|
|
|
DATA_PATH = "corpus.txt" |
|
|
TOKENIZER_PATH = "ko_unigram.model" |
|
|
|
|
|
if not os.path.exists(DATA_PATH): |
|
|
download_file( |
|
|
"https://huggingface.co/datasets/Yuchan5386/Prototype/resolve/main/corpus_ko.txt?download=true", |
|
|
DATA_PATH |
|
|
) |
|
|
|
|
|
if not os.path.exists(TOKENIZER_PATH): |
|
|
download_file( |
|
|
"https://huggingface.co/Yuchan5386/Respiso/resolve/main/bpe.model?download=true", |
|
|
TOKENIZER_PATH |
|
|
) |
|
|
|
|
|
sp = spm.SentencePieceProcessor(TOKENIZER_PATH) |
|
|
|
|
|
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0 |
|
|
start_id = sp.piece_to_id("<start>") |
|
|
sep_id = sp.piece_to_id("<sep>") |
|
|
end_id = sp.piece_to_id("<end>") |
|
|
unk_id = sp.piece_to_id("<unk>") |
|
|
vocab_size = sp.get_piece_size() |
|
|
print(f"โ
Vocabulary size: {vocab_size}") |
|
|
|
|
|
max_len = 512 |
|
|
batch_size = 256 |
|
|
|
|
|
def text_to_ids(text): |
|
|
return sp.encode(text, out_type=int) |
|
|
|
|
|
def ids_to_text(ids): |
|
|
return sp.decode(ids) |
|
|
|
|
|
def txt_stream(file_path): |
|
|
with open(file_path, "r", encoding="utf-8") as f: |
|
|
for line in f: |
|
|
text = line.strip() |
|
|
if not text: |
|
|
continue |
|
|
|
|
|
ids = text_to_ids(text) |
|
|
ids = ids[:max_len - 1] |
|
|
|
|
|
full_input = ids + [end_id] |
|
|
pad_len = max_len - len(full_input) |
|
|
full_input += [pad_id] * pad_len |
|
|
|
|
|
|
|
|
target = full_input[1:] + [pad_id] |
|
|
yield ( |
|
|
tf.convert_to_tensor(full_input, dtype=tf.int32), |
|
|
tf.convert_to_tensor(target, dtype=tf.int32) |
|
|
) |
|
|
|
|
|
|
|
|
dataset = tf.data.Dataset.from_generator( |
|
|
lambda: txt_stream(DATA_PATH), |
|
|
output_signature=( |
|
|
tf.TensorSpec(shape=(max_len,), dtype=tf.int32), |
|
|
tf.TensorSpec(shape=(max_len,), dtype=tf.int32), |
|
|
) |
|
|
) |
|
|
|
|
|
dataset = dataset.shuffle(2000, seed=SEED).batch(batch_size, drop_remainder=True).prefetch(tf.data.AUTOTUNE) |
|
|
|
|
|
with strategy.scope(): |
|
|
dist_dataset = strategy.experimental_distribute_dataset(dataset) |
|
|
|
|
|
|
|
|
class Lo(layers.Layer): |
|
|
def __init__(self, d_model): |
|
|
super().__init__() |
|
|
self.proj = layers.Dense(d_model, use_bias=True, dtype='float32') |
|
|
self.p = layers.Dense(128, use_bias=True, dtype='float32') |
|
|
self._out_dtype = 'float32' |
|
|
|
|
|
def call(self, x): |
|
|
x_f32 = tf.cast(x, tf.float32) |
|
|
x = self.proj(x_f32) |
|
|
x = tf.nn.gelu(x) |
|
|
x = self.p(x) |
|
|
return tf.cast(x, self._out_dtype) |
|
|
|
|
|
class SwiGLU(layers.Layer): |
|
|
def __init__(self, d_model): |
|
|
super().__init__() |
|
|
self.W = layers.Dense(3500, dtype='float32') |
|
|
self.W1 = layers.Dense(d_model, dtype='float32') |
|
|
def call(self, x): |
|
|
x = tf.cast(x, tf.float32) |
|
|
x = self.W(x) |
|
|
a, b = tf.split(x, 2, axis=-1) |
|
|
out = self.W1(tf.nn.silu(a) * b) |
|
|
return tf.cast(out, x.dtype) |
|
|
|
|
|
class LoU(layers.Layer): |
|
|
def __init__(self, d_model, clip_value=5.0, eps=1e-6): |
|
|
super().__init__() |
|
|
self.d_model = d_model |
|
|
self.clip_value = float(clip_value) |
|
|
self.eps = float(eps) |
|
|
self.Q = layers.Dense(d_model, dtype='float32') |
|
|
self.K = layers.Dense(d_model, dtype='float32') |
|
|
self.V = layers.Dense(d_model, dtype='float32') |
|
|
self.Qr = Lo(d_model) |
|
|
self.Kr = Lo(d_model) |
|
|
self.Vr = Lo(d_model) |
|
|
self.proj = layers.Dense(d_model, use_bias=True, dtype='float32') |
|
|
self.O = layers.Dense(d_model, dtype='float32') |
|
|
self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32') |
|
|
self.norm1 = layers.LayerNormalization(epsilon=1e-5, dtype='float32') |
|
|
|
|
|
self.alpha_linear = layers.Dense(1, activation='sigmoid', dtype='float32') |
|
|
|
|
|
def _ema_over_time(self, score, alpha_dynamic): |
|
|
seq = tf.transpose(score, perm=[1, 0, 2]) |
|
|
alpha_seq = tf.transpose(alpha_dynamic, perm=[1, 0, 2]) |
|
|
|
|
|
def step(prev_ema, inputs): |
|
|
x_t, alpha_t = inputs |
|
|
new = alpha_t * x_t + (1.0 - alpha_t) * prev_ema |
|
|
return new |
|
|
|
|
|
init = seq[0] |
|
|
first_alpha = alpha_seq[0] |
|
|
remaining_seq = seq[1:] |
|
|
remaining_alpha = alpha_seq[1:] |
|
|
elems = (remaining_seq, remaining_alpha) |
|
|
ema_seq = tf.scan(fn=step, elems=elems, initializer=init) |
|
|
ema_seq = tf.concat([tf.expand_dims(init, 0), ema_seq], axis=0) |
|
|
ema = tf.transpose(ema_seq, perm=[1, 0, 2]) |
|
|
return ema |
|
|
|
|
|
def call(self, x): |
|
|
x_f32 = tf.cast(x, tf.float32) |
|
|
residual = x_f32 |
|
|
x_f32 = self.norm1(x) |
|
|
|
|
|
q = self.Q(x_f32) |
|
|
k = self.K(x_f32) |
|
|
V = self.V(x_f32) |
|
|
q = self.Qr(q) |
|
|
k = self.Kr(k) |
|
|
V = self.Vr(V) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
g_q = (tf.nn.tanh(q) + 1.0) / 2.0 |
|
|
g_k = (tf.nn.tanh(k) + 1.0) / 2.0 |
|
|
score = g_q * g_k |
|
|
|
|
|
alpha_dynamic = self.alpha_linear(x_f32) |
|
|
score_ema = self._ema_over_time(score, alpha_dynamic) |
|
|
mean_last = tf.reduce_mean(score_ema, axis=-1, keepdims=True) |
|
|
denom = tf.maximum(mean_last, self.eps) |
|
|
score_norm = score_ema / denom |
|
|
score_clipped = tf.clip_by_value(score_norm, -self.clip_value, self.clip_value) |
|
|
x_comb = score_clipped * V |
|
|
out = self.proj(x_comb) |
|
|
out = self.norm(out + residual) |
|
|
return tf.cast(out, x.dtype) |
|
|
|
|
|
class Block(layers.Layer): |
|
|
def __init__(self, d_model): |
|
|
super().__init__() |
|
|
self.lou = LoU(d_model) |
|
|
self.glu = SwiGLU(d_model) |
|
|
self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32') |
|
|
|
|
|
def call(self, x): |
|
|
x = self.lou(x) |
|
|
x = self.norm(self.glu(x)) + x |
|
|
return x |
|
|
|
|
|
class ReLM(tf.keras.Model): |
|
|
def __init__(self, vocab_size, max_seq_len, d_model, n_layers, dropout_rate=0.1): |
|
|
super().__init__() |
|
|
self.token_embedding = layers.Embedding(vocab_size, d_model) |
|
|
self.pos_embedding = layers.Embedding(max_seq_len, d_model) |
|
|
self.blocks = [Block(d_model) for _ in range(n_layers)] |
|
|
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype="float32") |
|
|
|
|
|
def call(self, x, training=False): |
|
|
batch_size, seq_len = tf.shape(x)[0], tf.shape(x)[1] |
|
|
positions = tf.range(seq_len)[tf.newaxis, :] |
|
|
x = self.token_embedding(x) + self.pos_embedding(positions) |
|
|
for block in self.blocks: |
|
|
x = block(x) |
|
|
x = self.ln_f(x) |
|
|
embedding_matrix = tf.cast(self.token_embedding.embeddings, x.dtype) |
|
|
logits = tf.matmul(x, embedding_matrix, transpose_b=True) |
|
|
return tf.cast(logits, tf.float32) |
|
|
|
|
|
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none') |
|
|
|
|
|
def masked_loss(y_true, y_pred): |
|
|
loss = loss_fn(y_true, y_pred) |
|
|
mask = tf.cast(tf.not_equal(y_true, pad_id), tf.float32) |
|
|
masked_loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask) |
|
|
return masked_loss |
|
|
|
|
|
def masked_perplexity(y_true, y_pred): |
|
|
loss = loss_fn(y_true, y_pred) |
|
|
mask = tf.cast(tf.not_equal(y_true, pad_id), tf.float32) |
|
|
avg_loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask) |
|
|
return tf.exp(tf.minimum(avg_loss, 10.0)) |
|
|
|
|
|
def create_lr_schedule(initial_lr=5e-5, decay_steps=10000, decay_rate=0.9): |
|
|
return tf.keras.optimizers.schedules.ExponentialDecay( |
|
|
initial_learning_rate=initial_lr, |
|
|
decay_steps=decay_steps, |
|
|
decay_rate=decay_rate, |
|
|
staircase=False |
|
|
) |
|
|
|
|
|
|
|
|
model = ReLM( |
|
|
vocab_size=vocab_size, |
|
|
max_seq_len=max_len, |
|
|
d_model=700, |
|
|
n_layers=2 |
|
|
) |
|
|
|
|
|
|
|
|
optimizer = tf.keras.optimizers.Adam( |
|
|
learning_rate=create_lr_schedule(), |
|
|
beta_1=0.9, |
|
|
beta_2=0.95, |
|
|
epsilon=1e-8, |
|
|
clipnorm=1.0 |
|
|
) |
|
|
|
|
|
|
|
|
model.compile( |
|
|
optimizer=optimizer, |
|
|
loss=masked_loss, |
|
|
metrics=[ |
|
|
masked_perplexity |
|
|
] |
|
|
) |
|
|
|
|
|
|
|
|
dummy_input = np.zeros((1, max_len), dtype=np.int32) |
|
|
model(dummy_input) |
|
|
model.summary() |
|
|
|
|
|
history = model.fit(dataset, epochs=1, verbose=1) |
|
|
|
|
|
|
|
|
|
|
|
model.save_weights("model.weights.h5") |
|
|
print("๋ชจ๋ธ ๊ฐ์ค์น ์ ์ฅ ์๋ฃ!") |
|
|
|
|
|
def generate_text_topp(model, prompt, max_len=150, max_gen=150, p=0.9, temperature=0.8, min_len=20): |
|
|
model_input = text_to_ids(f"<start> {prompt}") |
|
|
model_input = model_input[:max_len] |
|
|
generated = list(model_input) |
|
|
for step in range(max_gen): |
|
|
if len(generated) > max_len: |
|
|
input_seq = generated[-max_len:] |
|
|
else: |
|
|
input_seq = generated |
|
|
input_padded = np.pad(input_seq, (0, max_len - len(input_seq)), constant_values=pad_id) |
|
|
input_tensor = tf.convert_to_tensor([input_padded]) |
|
|
logits = model(input_tensor, training=False) |
|
|
next_token_logits = logits[0, len(input_seq) - 1].numpy() |
|
|
next_token_logits[end_id] -= 5.0 |
|
|
next_token_logits[pad_id] -= 10.0 |
|
|
probs = tf.nn.softmax(next_token_logits / temperature).numpy() |
|
|
sorted_indices = np.argsort(probs)[::-1] |
|
|
sorted_probs = probs[sorted_indices] |
|
|
cumulative_probs = np.cumsum(sorted_probs) |
|
|
cutoff = np.searchsorted(cumulative_probs, p) |
|
|
top_indices = sorted_indices[:cutoff + 1] |
|
|
top_probs = sorted_probs[:cutoff + 1] |
|
|
top_probs /= np.sum(top_probs) |
|
|
next_token_id = np.random.choice(top_indices, p=top_probs) |
|
|
if next_token_id == end_id and len(generated) >= min_len: |
|
|
break |
|
|
generated.append(int(next_token_id)) |
|
|
return ids_to_text(generated) |
|
|
|
|
|
print("\n\n===== ์์ฑ ๊ฒฐ๊ณผ =====") |
|
|
print(generate_text_topp(model, "์ง๋ 2๋
๋์ ์ถ์ฐ์ฐ์ด ๊ตญ๊ฐ๊ฐ ํ์ํ ์ฐ๊ตฌ๋ฅผ", p=0.9)) |