gametime / README.md
ga642381's picture
Update README.md
08de1af verified
metadata
configs:
  - config_name: basic
    data_files:
      - split: test
        path:
          - basic/test-*.parquet
          - basic/test.parquet
    default: true
  - config_name: advanced
    data_files:
      - split: test
        path:
          - advanced/test-*.parquet
          - advanced/test.parquet
pretty_name: Gametime
tags:
  - audio
  - speech
  - tts
  - asr
  - benchmark
task_categories:
  - automatic-speech-recognition
  - text-to-speech
  - audio-to-audio
language:
  - en
license: cc-by-4.0
size_categories:
  - n<100K

Gametime Benchmark

The Gametime dataset provides lightweight, streaming-friendly splits for TTS/ASR/SpokenLM prototyping.
For full details, please refer to the paper:
πŸ‘‰ Game-Time: Evaluating Temporal Dynamics in Spoken Language Models


πŸ“¦ Download Options

1️⃣ Recommended β€” Full ZIP Download

If you prefer the original folder layout you can download one of the ZIPs packaged in gametime/download/. There are two kinds available in this repository:

  • gametime/download/basic_instructions.zip β€” unpacks to:
basic_instructions/
β”œβ”€β”€ text/
β”‚   β”œβ”€β”€ *-dataset.json         # per-dataset JSON manifest(s)
β”œβ”€β”€ audios/
β”‚   β”œβ”€β”€ <dataset_id>/
β”‚   β”‚   └── test/*.wav
β”œβ”€β”€ alignments/                 # per-audio alignment files 
β”‚   β”œβ”€β”€ <dataset_id>/
β”‚   β”‚   β”œβ”€β”€ <stem>.jsonl
  • gametime/download/advanced_instructions.zip β€” unpacks to:
advanced_instructions/
β”œβ”€β”€ text/
β”‚   β”œβ”€β”€ *-dataset.json         # per-dataset JSON manifest(s) with timing tokens
β”œβ”€β”€ audios/
β”‚   β”œβ”€β”€ <dataset_id>/
β”‚   β”‚   └── test/*.wav
β”œβ”€β”€ alignments/                 # per-audio alignment files 
β”‚   β”œβ”€β”€ <dataset_id>/
β”‚   β”‚   β”œβ”€β”€ <stem>.jsonl

Notes:

  • Each ZIP in gametime/download/ preserves the original source tree names (basic_instructions/ or advanced_instructions/).

Download example (Hugging Face):

from huggingface_hub import hf_hub_download
import os

path = hf_hub_download(
    repo_id="gametime-benchmark/gametime",
    repo_type="dataset",
    filename="download/basic_instructions.zip",
    revision="main",
    local_dir=".",
)
print("saved to:", path)

Unzip example:

unzip gametime/download/basic_instructions.zip

2️⃣ Optional β€” Stream from Hugging Face

from datasets import load_dataset
import io
import soundfile as sf

# Load Basic train split
ds_basic = load_dataset("gametime-benchmark/gametime", "basic", split="test", streaming=True)
ex = next(iter(ds_basic))
buf = io.BytesIO(ex["audio_bytes"])
wav, sr = sf.read(buf, dtype="float32")
print(ex["id"], sr, len(wav), ex["text"])

# Load Advanced test split
ds_adv = load_dataset("gametime-benchmark/gametime", "advanced", split="test", streaming=True)
ex_adv = next(iter(ds_adv))
buf_adv = io.BytesIO(ex_adv["audio_bytes"])
wav_adv, sr_adv = sf.read(buf_adv, dtype="float32")
print(ex_adv["id"], sr_adv, len(wav_adv), ex_adv["text"])
  • Works with streaming=True β€” no full download needed
  • Requires only soundfile (libsndfile)

πŸ“‘ Schema

Each Parquet row has:

Column Type Description
id str e.g. 1-a-Sequence-Number/train/1-a-Sequence-Number-01-01.wav
category str "basic" or "advanced"
dataset str group name (e.g. 1-a-Sequence-Number)
split str train or test
template_idx str template index if available
item_idx str item index if available
text str reference transcription / prompt
alignment str alignment metadata
audio_bytes bytes raw WAV file bytes
audio_format str "wav"
sampling_rate int e.g., 16000

πŸ“š Citation

If you use this dataset, please cite:

@article{chang2025gametime,
  title   = {Game-Time: Evaluating Temporal Dynamics in Spoken Language Models},
  author  = {Kai-Wei Chang and En-Pei Hu and Chun-Yi Kuan and Wenze Ren and Wei-Chih Chen and Guan-Ting Lin and Yu Tsao and Shao-Hua Sun and Hung-yi Lee and James Glass},
  year    = {2025},
  journal = {arXiv preprint arXiv:2509.26388},
  url     = {https://arxiv.org/abs/2509.26388}
}