metadata
configs:
- config_name: basic
data_files:
- split: test
path:
- basic/test-*.parquet
- basic/test.parquet
default: true
- config_name: advanced
data_files:
- split: test
path:
- advanced/test-*.parquet
- advanced/test.parquet
pretty_name: Gametime
tags:
- audio
- speech
- tts
- asr
- benchmark
task_categories:
- automatic-speech-recognition
- text-to-speech
- audio-to-audio
language:
- en
license: cc-by-4.0
size_categories:
- n<100K
Gametime Benchmark
The Gametime dataset provides lightweight, streaming-friendly splits for TTS/ASR/SpokenLM prototyping.
For full details, please refer to the paper:
π Game-Time: Evaluating Temporal Dynamics in Spoken Language Models
π¦ Download Options
1οΈβ£ Recommended β Full ZIP Download
If you prefer the original folder layout you can download one of the ZIPs packaged in gametime/download/. There are two kinds available in this repository:
gametime/download/basic_instructions.zipβ unpacks to:
basic_instructions/
βββ text/
β βββ *-dataset.json # per-dataset JSON manifest(s)
βββ audios/
β βββ <dataset_id>/
β β βββ test/*.wav
βββ alignments/ # per-audio alignment files
β βββ <dataset_id>/
β β βββ <stem>.jsonl
gametime/download/advanced_instructions.zipβ unpacks to:
advanced_instructions/
βββ text/
β βββ *-dataset.json # per-dataset JSON manifest(s) with timing tokens
βββ audios/
β βββ <dataset_id>/
β β βββ test/*.wav
βββ alignments/ # per-audio alignment files
β βββ <dataset_id>/
β β βββ <stem>.jsonl
Notes:
- Each ZIP in
gametime/download/preserves the original source tree names (basic_instructions/oradvanced_instructions/).
Download example (Hugging Face):
from huggingface_hub import hf_hub_download
import os
path = hf_hub_download(
repo_id="gametime-benchmark/gametime",
repo_type="dataset",
filename="download/basic_instructions.zip",
revision="main",
local_dir=".",
)
print("saved to:", path)
Unzip example:
unzip gametime/download/basic_instructions.zip
2οΈβ£ Optional β Stream from Hugging Face
from datasets import load_dataset
import io
import soundfile as sf
# Load Basic train split
ds_basic = load_dataset("gametime-benchmark/gametime", "basic", split="test", streaming=True)
ex = next(iter(ds_basic))
buf = io.BytesIO(ex["audio_bytes"])
wav, sr = sf.read(buf, dtype="float32")
print(ex["id"], sr, len(wav), ex["text"])
# Load Advanced test split
ds_adv = load_dataset("gametime-benchmark/gametime", "advanced", split="test", streaming=True)
ex_adv = next(iter(ds_adv))
buf_adv = io.BytesIO(ex_adv["audio_bytes"])
wav_adv, sr_adv = sf.read(buf_adv, dtype="float32")
print(ex_adv["id"], sr_adv, len(wav_adv), ex_adv["text"])
- Works with
streaming=Trueβ no full download needed - Requires only
soundfile(libsndfile)
π Schema
Each Parquet row has:
| Column | Type | Description |
|---|---|---|
id |
str | e.g. 1-a-Sequence-Number/train/1-a-Sequence-Number-01-01.wav |
category |
str | "basic" or "advanced" |
dataset |
str | group name (e.g. 1-a-Sequence-Number) |
split |
str | train or test |
template_idx |
str | template index if available |
item_idx |
str | item index if available |
text |
str | reference transcription / prompt |
alignment |
str | alignment metadata |
audio_bytes |
bytes | raw WAV file bytes |
audio_format |
str | "wav" |
sampling_rate |
int | e.g., 16000 |
π Citation
If you use this dataset, please cite:
@article{chang2025gametime,
title = {Game-Time: Evaluating Temporal Dynamics in Spoken Language Models},
author = {Kai-Wei Chang and En-Pei Hu and Chun-Yi Kuan and Wenze Ren and Wei-Chih Chen and Guan-Ting Lin and Yu Tsao and Shao-Hua Sun and Hung-yi Lee and James Glass},
year = {2025},
journal = {arXiv preprint arXiv:2509.26388},
url = {https://arxiv.org/abs/2509.26388}
}