paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/learning-rich-features-at-high-speed-for
|
Learning Rich Features at High-Speed for Single-Shot Object Detection
| null |
http://openaccess.thecvf.com/content_ICCV_2019/html/Wang_Learning_Rich_Features_at_High-Speed_for_Single-Shot_Object_Detection_ICCV_2019_paper.html
|
http://openaccess.thecvf.com/content_ICCV_2019/papers/Wang_Learning_Rich_Features_at_High-Speed_for_Single-Shot_Object_Detection_ICCV_2019_paper.pdf
|
https://github.com/vaesl/LRF-Net
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/f-gan-training-generative-neural-samplers
|
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
|
1606.00709
|
http://arxiv.org/abs/1606.00709v1
|
http://arxiv.org/pdf/1606.00709v1.pdf
|
https://github.com/mboudiaf/Mutual-Information-Variational-Bounds
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/nltk-the-natural-language-toolkit
|
NLTK: The Natural Language Toolkit
|
cs/0205028
|
https://arxiv.org/abs/cs/0205028v1
|
https://arxiv.org/pdf/cs/0205028v1.pdf
|
https://github.com/napakalas/NLIMED
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/an-architecture-combining-convolutional
|
An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification
|
1712.03541
|
http://arxiv.org/abs/1712.03541v2
|
http://arxiv.org/pdf/1712.03541v2.pdf
|
https://github.com/da-moon/classifiers-monorepo
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-forest
|
Deep Forest
|
1702.08835
|
https://arxiv.org/abs/1702.08835v4
|
https://arxiv.org/pdf/1702.08835v4.pdf
|
https://github.com/da-moon/classifiers-monorepo
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-neural-network-architecture-combining-gated
|
A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data
|
1709.03082
|
http://arxiv.org/abs/1709.03082v8
|
http://arxiv.org/pdf/1709.03082v8.pdf
|
https://github.com/da-moon/classifiers-monorepo
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/high-throughput-open-source-implementation-of
|
High Throughput Open-Source Implementation of Wi-Fi 6 and WiMAX LDPC Encoder and Decoder
|
2306.12063
|
https://arxiv.org/abs/2306.12063v1
|
https://arxiv.org/pdf/2306.12063v1.pdf
|
https://github.com/talenik/yaldpc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/achieving-open-vocabulary-neural-machine
|
Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models
|
1604.00788
|
http://arxiv.org/abs/1604.00788v2
|
http://arxiv.org/pdf/1604.00788v2.pdf
|
https://github.com/yurayli/stanford-cs224n-sol
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/qubo-formulations-for-system-of-linear
|
QUBO formulations for numerical quantum computing
|
2106.10819
|
https://arxiv.org/abs/2106.10819v4
|
https://arxiv.org/pdf/2106.10819v4.pdf
|
https://github.com/ktfriends/QUBO/blob/main/Formulations.ipynb
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/continuous-dropout
|
Continuous Dropout
|
1911.12675
|
https://arxiv.org/abs/1911.12675v1
|
https://arxiv.org/pdf/1911.12675v1.pdf
|
https://github.com/jasonustc/caffe-multigpu
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/squeeze-and-excitation-networks
|
Squeeze-and-Excitation Networks
|
1709.01507
|
https://arxiv.org/abs/1709.01507v4
|
https://arxiv.org/pdf/1709.01507v4.pdf
|
https://github.com/Dycollapsar/Attention-Based-for-Medicalimaging
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/falcon-an-accurate-real-time-monitor-for
|
FALCON: An accurate real-time monitor for client-based mobile network data analytics
|
1907.10110
|
https://arxiv.org/abs/1907.10110v2
|
https://arxiv.org/pdf/1907.10110v2.pdf
|
https://github.com/falkenber9/falcon
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/wavelet-convolutional-neural-networks-for
|
Wavelet Convolutional Neural Networks for Texture Classification
|
1707.07394
|
http://arxiv.org/abs/1707.07394v1
|
http://arxiv.org/pdf/1707.07394v1.pdf
|
https://github.com/menon92/WaveletCNN
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/joint-unsupervised-learning-of-optical-flow
|
Joint Unsupervised Learning of Optical Flow and Depth by Watching Stereo Videos
|
1810.03654
|
http://arxiv.org/abs/1810.03654v1
|
http://arxiv.org/pdf/1810.03654v1.pdf
|
https://github.com/baidu-research/UnDepthflow
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/rgtsvm-support-vector-machines-on-a-gpu-in-r
|
Rgtsvm: Support Vector Machines on a GPU in R
|
1706.05544
|
http://arxiv.org/abs/1706.05544v1
|
http://arxiv.org/pdf/1706.05544v1.pdf
|
https://github.com/Danko-Lab/Rgtsvm
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-cosmic-linear-anisotropy-solving-system-1
|
The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes
|
1104.2933
|
http://arxiv.org/abs/1104.2933v3
|
http://arxiv.org/pdf/1104.2933v3.pdf
|
https://github.com/PoulinV/class_interacting_neutrinos
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/rethinking-motion-deblurring-training-a
|
Rethinking Motion Deblurring Training: A Segmentation-Based Method for Simulating Non-Uniform Motion Blurred Images
|
2209.12675
|
https://arxiv.org/abs/2209.12675v1
|
https://arxiv.org/pdf/2209.12675v1.pdf
|
https://github.com/guillermocarbajal/segmentationbaseddeblurringdataset
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/3d-manhattan-room-layout-reconstruction-from
|
Manhattan Room Layout Reconstruction from a Single 360 image: A Comparative Study of State-of-the-art Methods
|
1910.04099
|
https://arxiv.org/abs/1910.04099v3
|
https://arxiv.org/pdf/1910.04099v3.pdf
|
https://github.com/sunset1995/HorizonNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/toyadmos-a-dataset-of-miniature-machine
|
ToyADMOS: A Dataset of Miniature-Machine Operating Sounds for Anomalous Sound Detection
|
1908.03299
|
https://arxiv.org/abs/1908.03299v1
|
https://arxiv.org/pdf/1908.03299v1.pdf
|
https://github.com/YumaKoizumi/ToyADMOS-dataset
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/gnn-explainer-a-tool-for-post-hoc-explanation
|
GNNExplainer: Generating Explanations for Graph Neural Networks
|
1903.03894
|
https://arxiv.org/abs/1903.03894v4
|
https://arxiv.org/pdf/1903.03894v4.pdf
|
https://github.com/anshul3899/GNNExplainer-Experiments
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/collective-optimization-for-variational
|
Collective optimization for variational quantum eigensolvers
|
1910.14030
|
https://arxiv.org/abs/1910.14030v1
|
https://arxiv.org/pdf/1910.14030v1.pdf
|
https://github.com/QuContractor/VQE_tutorial
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/tha3aroon-at-nsurl-2019-task-8-semantic
|
Tha3aroon at NSURL-2019 Task 8: Semantic Question Similarity in Arabic
|
1912.12514
|
https://arxiv.org/abs/1912.12514v1
|
https://arxiv.org/pdf/1912.12514v1.pdf
|
https://github.com/AliOsm/semantic-question-similarity
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/physics-informed-deep-learning-part-ii-data
|
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
|
1711.10566
|
http://arxiv.org/abs/1711.10566v1
|
http://arxiv.org/pdf/1711.10566v1.pdf
|
https://github.com/pierremtb/PINNs-TF2.0
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/adversarial-robustness-guarantees-for
|
Adversarial Robustness Guarantees for Gaussian Processes
|
2104.03180
|
https://arxiv.org/abs/2104.03180v1
|
https://arxiv.org/pdf/2104.03180v1.pdf
|
https://github.com/andreapatane/check-GPclass
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/planck-2015-results-xi-cmb-power-spectra
|
Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters
|
1507.02704
|
https://arxiv.org/abs/1507.02704v3
|
https://arxiv.org/pdf/1507.02704v3.pdf
|
https://github.com/heatherprince/cosmoped
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/field-aware-factorization-machines-in-a-real
|
Field-aware Factorization Machines in a Real-world Online Advertising System
|
1701.04099
|
http://arxiv.org/abs/1701.04099v3
|
http://arxiv.org/pdf/1701.04099v3.pdf
|
https://github.com/cpapadimitriou/Click-Through-Rate-prediction
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/glas-global-to-local-safe-autonomy-synthesis
|
GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning with End-to-End Learning
|
2002.11807
|
https://arxiv.org/abs/2002.11807v3
|
https://arxiv.org/pdf/2002.11807v3.pdf
|
https://github.com/bpriviere/glas
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/neural-machine-translation-by-jointly
|
Neural Machine Translation by Jointly Learning to Align and Translate
|
1409.0473
|
http://arxiv.org/abs/1409.0473v7
|
http://arxiv.org/pdf/1409.0473v7.pdf
|
https://github.com/yurayli/stanford-cs224n-sol
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/words-can-shift-dynamically-adjusting-word
|
Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors
|
1811.09362
|
http://arxiv.org/abs/1811.09362v2
|
http://arxiv.org/pdf/1811.09362v2.pdf
|
https://github.com/righ120/multimodal_nlp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-guide-to-convolution-arithmetic-for-deep
|
A guide to convolution arithmetic for deep learning
|
1603.07285
|
http://arxiv.org/abs/1603.07285v2
|
http://arxiv.org/pdf/1603.07285v2.pdf
|
https://github.com/ryan-perk/olympic_mining
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/constructing-metropolis-hastings-proposals
|
Constructing Metropolis-Hastings proposals using damped BFGS updates
|
1801.01243
|
http://arxiv.org/abs/1801.01243v2
|
http://arxiv.org/pdf/1801.01243v2.pdf
|
https://github.com/compops/qnmh-sysid2018
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/ms-marco-a-human-generated-machine-reading
|
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
|
1611.09268
|
http://arxiv.org/abs/1611.09268v3
|
http://arxiv.org/pdf/1611.09268v3.pdf
|
https://github.com/microsoft/MSMARCO-OpenKP
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/variational-cross-domain-natural-language
|
Variational Cross-domain Natural Language Generation for Spoken Dialogue Systems
|
1812.08879
|
http://arxiv.org/abs/1812.08879v1
|
http://arxiv.org/pdf/1812.08879v1.pdf
|
https://github.com/andy194673/nlg-scvae
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/large-scale-study-of-curiosity-driven
|
Large-Scale Study of Curiosity-Driven Learning
|
1808.04355
|
http://arxiv.org/abs/1808.04355v1
|
http://arxiv.org/pdf/1808.04355v1.pdf
|
https://github.com/SPark9625/Large-Scale-Study-of-Curiosity-Driven-Learning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unos-unified-unsupervised-optical-flow-and
|
UnOS: Unified Unsupervised Optical-Flow and Stereo-Depth Estimation by Watching Videos
| null |
http://openaccess.thecvf.com/content_CVPR_2019/html/Wang_UnOS_Unified_Unsupervised_Optical-Flow_and_Stereo-Depth_Estimation_by_Watching_Videos_CVPR_2019_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_UnOS_Unified_Unsupervised_Optical-Flow_and_Stereo-Depth_Estimation_by_Watching_Videos_CVPR_2019_paper.pdf
|
https://github.com/baidu-research/UnDepthflow
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/microsoft-coco-common-objects-in-context
|
Microsoft COCO: Common Objects in Context
|
1405.0312
|
http://arxiv.org/abs/1405.0312v3
|
http://arxiv.org/pdf/1405.0312v3.pdf
|
https://github.com/vlcekl/n2n-tomo
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/geometric-learning-of-the-conformational
|
Geometric learning of the conformational dynamics of molecules using dynamic graph neural networks
|
2106.13277
|
https://arxiv.org/abs/2106.13277v1
|
https://arxiv.org/pdf/2106.13277v1.pdf
|
https://github.com/pnnl/mol_dgnn
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/asteroseismology-of-16000-kepler-red-giants
|
Asteroseismology of 16000 Kepler Red Giants: Global Oscillation Parameters, Masses, and Radii
|
1802.04455
|
http://arxiv.org/abs/1802.04455v2
|
http://arxiv.org/pdf/1802.04455v2.pdf
|
https://github.com/rodrigcd/Recurrent_parameter_estimation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/airsim-high-fidelity-visual-and-physical
|
AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles
|
1705.05065
|
http://arxiv.org/abs/1705.05065v2
|
http://arxiv.org/pdf/1705.05065v2.pdf
|
https://github.com/jgaleav/AirSim
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/convolutional-neural-network-architecture-for
|
Convolutional neural network architecture for geometric matching
|
1703.05593
|
http://arxiv.org/abs/1703.05593v2
|
http://arxiv.org/pdf/1703.05593v2.pdf
|
https://github.com/Semanti1/cnngeometric_pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/lowest-dimensional-portals-to-su-n-exotics
|
Lowest Dimensional Portals to SU($N$) Exotics
|
2010.05827
|
http://arxiv.org/abs/2010.05827v1
|
http://arxiv.org/pdf/2010.05827v1.pdf
|
https://github.com/jaulbric/Tesselation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/lowresourceeval-2019-a-shared-task-on
|
LowResourceEval-2019: a shared task on morphological analysis for low-resource languages
|
2001.11285
|
https://arxiv.org/abs/2001.11285v1
|
https://arxiv.org/pdf/2001.11285v1.pdf
|
https://github.com/lowresource-lang-eval/morphology_scripts
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-simple-dynamization-of-trapezoidal-point
|
A Simple Dynamization of Trapezoidal Point Location in Planar Subdivisions
|
1912.03389
|
https://arxiv.org/abs/1912.03389v1
|
https://arxiv.org/pdf/1912.03389v1.pdf
|
https://github.com/milutinB/dynamic_trapezoidal_map_impl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pointnet-deep-learning-on-point-sets-for-3d
|
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
|
1612.00593
|
http://arxiv.org/abs/1612.00593v2
|
http://arxiv.org/pdf/1612.00593v2.pdf
|
https://github.com/GOD-GOD-Autonomous-Vehicle/self-pointnet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rethinking-atrous-convolution-for-semantic
|
Rethinking Atrous Convolution for Semantic Image Segmentation
|
1706.05587
|
http://arxiv.org/abs/1706.05587v3
|
http://arxiv.org/pdf/1706.05587v3.pdf
|
https://github.com/giovanniguidi/deeplabV3_Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/speeding-up-vp9-intra-encoder-with
|
Speeding up VP9 Intra Encoder with Hierarchical Deep Learning Based Partition Prediction
|
1906.06476
|
https://arxiv.org/abs/1906.06476v2
|
https://arxiv.org/pdf/1906.06476v2.pdf
|
https://github.com/Somdyuti2/H-FCN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/encoder-decoder-with-atrous-separable
|
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
|
1802.02611
|
http://arxiv.org/abs/1802.02611v3
|
http://arxiv.org/pdf/1802.02611v3.pdf
|
https://github.com/giovanniguidi/deeplabV3_Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/transform-invariant-convolutional-neural
|
Transform-Invariant Convolutional Neural Networks for Image Classification and Search
|
1912.01447
|
https://arxiv.org/abs/1912.01447v1
|
https://arxiv.org/pdf/1912.01447v1.pdf
|
https://github.com/jasonustc/caffe-multigpu
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/network-trimming-a-data-driven-neuron-pruning
|
Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures
|
1607.03250
|
http://arxiv.org/abs/1607.03250v1
|
http://arxiv.org/pdf/1607.03250v1.pdf
|
https://github.com/Mind23-2/MindCode-24
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/streaming-word-embeddings-with-the-space
|
Streaming Word Embeddings with the Space-Saving Algorithm
|
1704.07463
|
http://arxiv.org/abs/1704.07463v1
|
http://arxiv.org/pdf/1704.07463v1.pdf
|
https://github.com/cjmay/athena
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/sentence-bert-sentence-embeddings-using
|
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
|
1908.10084
|
https://arxiv.org/abs/1908.10084v1
|
https://arxiv.org/pdf/1908.10084v1.pdf
|
https://github.com/aneesha/SiameseBERT-Notebook
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/darts-differentiable-architecture-search
|
DARTS: Differentiable Architecture Search
|
1806.09055
|
http://arxiv.org/abs/1806.09055v2
|
http://arxiv.org/pdf/1806.09055v2.pdf
|
https://github.com/google-research/google-research/tree/master/enas_lm
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/regularizing-and-optimizing-lstm-language
|
Regularizing and Optimizing LSTM Language Models
|
1708.02182
|
http://arxiv.org/abs/1708.02182v1
|
http://arxiv.org/pdf/1708.02182v1.pdf
|
https://github.com/google-research/google-research/tree/master/enas_lm
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mect-multi-metadata-embedding-based-cross
|
MECT: Multi-Metadata Embedding based Cross-Transformer for Chinese Named Entity Recognition
|
2107.05418
|
https://arxiv.org/abs/2107.05418v1
|
https://arxiv.org/pdf/2107.05418v1.pdf
|
https://github.com/CoderMusou/MECT4CNER
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
|
Image-to-Image Translation with Conditional Adversarial Networks
|
1611.07004
|
http://arxiv.org/abs/1611.07004v3
|
http://arxiv.org/pdf/1611.07004v3.pdf
|
https://github.com/vaibhavjindal/pix2pix-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/analyzing-machine-learning-workloads-using-a
|
Analyzing Machine Learning Workloads Using a Detailed GPU Simulator
|
1811.08933
|
http://arxiv.org/abs/1811.08933v1
|
http://arxiv.org/pdf/1811.08933v1.pdf
|
https://github.com/prdalmia/gpgpu-sim-tlb
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pixel-wise-motion-deblurring-of-thermal
|
Pixel-Wise Motion Deblurring of Thermal Videos
|
2006.04973
|
https://arxiv.org/abs/2006.04973v1
|
https://arxiv.org/pdf/2006.04973v1.pdf
|
https://github.com/umautobots/pixelwise-deblurring
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/limitations-of-lazy-training-of-two-layers
|
Limitations of Lazy Training of Two-layers Neural Networks
|
1906.08899
|
https://arxiv.org/abs/1906.08899v1
|
https://arxiv.org/pdf/1906.08899v1.pdf
|
https://github.com/bGhorbani/Lazy-Training-Neural-Nets
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-multimodal-deep-learning-framework-for
|
A multimodal deep learning framework for scalable content based visual media retrieval
|
2105.08665
|
https://arxiv.org/abs/2105.08665v1
|
https://arxiv.org/pdf/2105.08665v1.pdf
|
https://github.com/ambareeshravi/media_retrieval
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-general-and-adaptive-robust-loss-function
|
A General and Adaptive Robust Loss Function
|
1701.03077
|
http://arxiv.org/abs/1701.03077v10
|
http://arxiv.org/pdf/1701.03077v10.pdf
|
https://github.com/jonbarron/robust_loss_pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/an-entropy-stable-discontinuous-galerkin
|
An entropy stable discontinuous Galerkin method for the two-layer shallow water equations on curvilinear meshes
|
2306.12699
|
https://arxiv.org/abs/2306.12699v1
|
https://arxiv.org/pdf/2306.12699v1.pdf
|
https://github.com/trixi-framework/paper-2023-es_two_layer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cullnet-calibrated-and-pose-aware-confidence
|
CullNet: Calibrated and Pose Aware Confidence Scores for Object Pose Estimation
|
1909.13476
|
https://arxiv.org/abs/1909.13476v1
|
https://arxiv.org/pdf/1909.13476v1.pdf
|
https://github.com/kartikgupta-at-anu/CullNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/semantic-image-synthesis-with-spatially
|
Semantic Image Synthesis with Spatially-Adaptive Normalization
|
1903.07291
|
https://arxiv.org/abs/1903.07291v2
|
https://arxiv.org/pdf/1903.07291v2.pdf
|
https://github.com/Kokonut133/frame2frame
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/flashlight-cnn-image-denoising
|
Flashlight CNN Image Denoising
|
2003.00762
|
https://arxiv.org/abs/2003.00762v2
|
https://arxiv.org/pdf/2003.00762v2.pdf
|
https://github.com/binhpht/flashlightCNN
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/first-exit-time-analysis-of-stochastic
|
First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise
|
1906.09069
|
https://arxiv.org/abs/1906.09069v1
|
https://arxiv.org/pdf/1906.09069v1.pdf
|
https://github.com/umutsimsekli/sgd_first_exit_time
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/expressive-power-of-tensor-network-1
|
Expressive power of tensor-network factorizations for probabilistic modeling
| null |
http://papers.nips.cc/paper/8429-expressive-power-of-tensor-network-factorizations-for-probabilistic-modeling
|
http://papers.nips.cc/paper/8429-expressive-power-of-tensor-network-factorizations-for-probabilistic-modeling.pdf
|
https://github.com/glivan/tensor_networks_for_probabilistic_modeling
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/importance-resampling-for-off-policy
|
Importance Resampling for Off-policy Prediction
|
1906.04328
|
https://arxiv.org/abs/1906.04328v2
|
https://arxiv.org/pdf/1906.04328v2.pdf
|
https://github.com/mkschleg/Resampling.jl
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/metaquant-learning-to-quantize-by-learning-to
|
MetaQuant: Learning to Quantize by Learning to Penetrate Non-differentiable Quantization
| null |
http://papers.nips.cc/paper/8647-metaquant-learning-to-quantize-by-learning-to-penetrate-non-differentiable-quantization
|
http://papers.nips.cc/paper/8647-metaquant-learning-to-quantize-by-learning-to-penetrate-non-differentiable-quantization.pdf
|
https://github.com/csyhhu/MetaQuant
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/phyre-a-new-benchmark-for-physical-reasoning
|
PHYRE: A New Benchmark for Physical Reasoning
|
1908.05656
|
https://arxiv.org/abs/1908.05656v1
|
https://arxiv.org/pdf/1908.05656v1.pdf
|
https://github.com/facebookresearch/phyre
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/towards-a-zero-one-law-for-entrywise-low-rank
|
Towards a Zero-One Law for Column Subset Selection
|
1811.01442
|
https://arxiv.org/abs/1811.01442v2
|
https://arxiv.org/pdf/1811.01442v2.pdf
|
https://github.com/zpl7840/general_loss_column_subset_selection
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/semantically-regularized-logic-graph
|
Embedding Symbolic Knowledge into Deep Networks
|
1909.01161
|
https://arxiv.org/abs/1909.01161v4
|
https://arxiv.org/pdf/1909.01161v4.pdf
|
https://github.com/ZiweiXU/LENSR
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/limitations-of-lazy-training-of-two-layers-1
|
Limitations of Lazy Training of Two-layers Neural Network
| null |
http://papers.nips.cc/paper/9111-limitations-of-lazy-training-of-two-layers-neural-network
|
http://papers.nips.cc/paper/9111-limitations-of-lazy-training-of-two-layers-neural-network.pdf
|
https://github.com/bGhorbani/Lazy-Training-Neural-Nets
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/neural-discrete-representation-learning
|
Neural Discrete Representation Learning
|
1711.00937
|
http://arxiv.org/abs/1711.00937v2
|
http://arxiv.org/pdf/1711.00937v2.pdf
|
https://github.com/iomanker/VQVAE-TF2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/reinforcement-learning-with-convex
|
Reinforcement Learning with Convex Constraints
|
1906.09323
|
https://arxiv.org/abs/1906.09323v2
|
https://arxiv.org/pdf/1906.09323v2.pdf
|
https://github.com/xkianteb/ApproPO
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/surfing-iterative-optimization-over
|
Surfing: Iterative optimization over incrementally trained deep networks
|
1907.08653
|
https://arxiv.org/abs/1907.08653v1
|
https://arxiv.org/pdf/1907.08653v1.pdf
|
https://github.com/jdlafferty/surfing
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/a-neurally-plausible-model-learns-successor
|
A neurally plausible model learns successor representations in partially observable environments
|
1906.09480
|
https://arxiv.org/abs/1906.09480v1
|
https://arxiv.org/pdf/1906.09480v1.pdf
|
https://github.com/evertes/distributional_SF
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/compositional-plan-vectors
|
Compositional Plan Vectors
| null |
http://papers.nips.cc/paper/9636-compositional-plan-vectors
|
http://papers.nips.cc/paper/9636-compositional-plan-vectors.pdf
|
https://github.com/cdevin/cpv
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/compiler-auto-vectorization-with-imitation
|
Compiler Auto-Vectorization with Imitation Learning
| null |
http://papers.nips.cc/paper/9604-compiler-auto-vectorization-with-imitation-learning
|
http://papers.nips.cc/paper/9604-compiler-auto-vectorization-with-imitation-learning.pdf
|
https://github.com/ithemal/vemal
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/integrating-semantics-and-neighborhood
|
Integrating Semantics and Neighborhood Information with Graph-Driven Generative Models for Document Retrieval
|
2105.13066
|
https://arxiv.org/abs/2105.13066v1
|
https://arxiv.org/pdf/2105.13066v1.pdf
|
https://github.com/MindSpore-paper-code-3/code9/tree/main/snuh
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/MegEngine/Models/tree/master/official/vision/classification/resnet
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/an-information-theoretic-framework-for-the
|
An Information-theoretic Framework for the Lossy Compression of Link Streams
|
1807.06874
|
http://arxiv.org/abs/1807.06874v1
|
http://arxiv.org/pdf/1807.06874v1.pdf
|
https://github.com/Lamarche-Perrin/greedy-graph-compression
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/matrix-product-states-and-the-nonabelian
|
Matrix product states and the nonabelian rotor model
|
1507.06624
|
http://arxiv.org/abs/1507.06624v2
|
http://arxiv.org/pdf/1507.06624v2.pdf
|
https://github.com/amilsted/mps-rotors
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/capsules-with-inverted-dot-product-attention-1
|
Capsules with Inverted Dot-Product Attention Routing
|
2002.04764
|
https://arxiv.org/abs/2002.04764v2
|
https://arxiv.org/pdf/2002.04764v2.pdf
|
https://github.com/yaohungt/Capsules-Inverted-Attention-Routing
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-to-predict-without-looking-ahead
|
Learning to Predict Without Looking Ahead: World Models Without Forward Prediction
|
1910.13038
|
https://arxiv.org/abs/1910.13038v2
|
https://arxiv.org/pdf/1910.13038v2.pdf
|
https://github.com/google/brain-tokyo-workshop
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/designing-network-design-spaces
|
Designing Network Design Spaces
|
2003.13678
|
https://arxiv.org/abs/2003.13678v1
|
https://arxiv.org/pdf/2003.13678v1.pdf
|
https://github.com/tuggeluk/pycls
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/stochastic-variational-video-prediction
|
Stochastic Variational Video Prediction
|
1710.11252
|
http://arxiv.org/abs/1710.11252v2
|
http://arxiv.org/pdf/1710.11252v2.pdf
|
https://github.com/StanfordVL/roboturk_real_dataset
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/threelittlemonkeys/cnn-text-classification-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/super-low-resolution-rf-powered
|
Super Low Resolution RF Powered Accelerometers for Alerting on Hospitalized Patient Bed Exits
|
2003.08530
|
https://arxiv.org/abs/2003.08530v1
|
https://arxiv.org/pdf/2003.08530v1.pdf
|
https://github.com/AdelaideAuto-IDLab/ID-Sensor
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/k-space-deep-learning-for-accelerated-mri
|
k-Space Deep Learning for Accelerated MRI
|
1805.03779
|
https://arxiv.org/abs/1805.03779v3
|
https://arxiv.org/pdf/1805.03779v3.pdf
|
https://github.com/hanyoseob/k-space-deep-learning
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/optimal-routing-for-constant-function-market
|
Optimal Routing for Constant Function Market Makers
|
2204.05238
|
https://arxiv.org/abs/2204.05238v1
|
https://arxiv.org/pdf/2204.05238v1.pdf
|
https://github.com/angeris/cfmm-routing-code
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/reachability-analysis-for-feed-forward-neural
|
Reachability Analysis for Feed-Forward Neural Networks using Face Lattices
|
2003.01226
|
https://arxiv.org/abs/2003.01226v1
|
https://arxiv.org/pdf/2003.01226v1.pdf
|
https://github.com/verivital/FaceLattice
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-learning-with-convolutional-neural
|
Deep learning with convolutional neural networks for EEG decoding and visualization
|
1703.05051
|
http://arxiv.org/abs/1703.05051v5
|
http://arxiv.org/pdf/1703.05051v5.pdf
|
https://github.com/rczhen/Movement-Classification-based-on-Electroencephalography-EEG-Signals
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/factorization-tricks-for-lstm-networks
|
Factorization tricks for LSTM networks
|
1703.10722
|
http://arxiv.org/abs/1703.10722v3
|
http://arxiv.org/pdf/1703.10722v3.pdf
|
https://github.com/rdspring1/PyTorch_GBW_LM
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/contrastive-adaptation-network-for
|
Contrastive Adaptation Network for Unsupervised Domain Adaptation
|
1901.00976
|
http://arxiv.org/abs/1901.00976v2
|
http://arxiv.org/pdf/1901.00976v2.pdf
|
https://github.com/kgl-prml/Contrastive-Adaptation-Network-for-Unsupervised-Domain-Adaptation
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-to-generalize-meta-learning-for
|
Learning to Generalize: Meta-Learning for Domain Generalization
|
1710.03463
|
http://arxiv.org/abs/1710.03463v1
|
http://arxiv.org/pdf/1710.03463v1.pdf
|
https://github.com/HAHA-DL/MLDG
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/kervolutional-neural-networks
|
Kervolutional Neural Networks
|
1904.03955
|
https://arxiv.org/abs/1904.03955v2
|
https://arxiv.org/pdf/1904.03955v2.pdf
|
https://github.com/ryanaleksander/kernel-convolution
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/probably-approximately-correct-vision-based
|
Probably Approximately Correct Vision-Based Planning using Motion Primitives
|
2002.12852
|
https://arxiv.org/abs/2002.12852v2
|
https://arxiv.org/pdf/2002.12852v2.pdf
|
https://github.com/irom-lab/PAC-Vision-Planning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/practical-calibration-of-the-temperature
|
Practical calibration of the temperature parameter in Gibbs posteriors
|
2004.10522
|
https://arxiv.org/abs/2004.10522v1
|
https://arxiv.org/pdf/2004.10522v1.pdf
|
https://github.com/lucieperrotta/temperature_calibration
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/constraint-answer-set-programming-without
|
Constraint Answer Set Programming without Grounding
|
1804.11162
|
https://arxiv.org/abs/1804.11162v2
|
https://arxiv.org/pdf/1804.11162v2.pdf
|
https://github.com/sarat-chandra-varanasi/pysasp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/definition-of-static-and-dynamic-load-models
|
Definition of Static and Dynamic Load Models for Grid Studies of Electric Vehicles Connected to Fast Charging Stations
|
2302.03943
|
https://arxiv.org/abs/2302.03943v1
|
https://arxiv.org/pdf/2302.03943v1.pdf
|
https://github.com/davide-del-giudice/electric_vehicle_models
| true
| true
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.