paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/dynamic-dual-attentive-aggregation-learning
|
Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person Re-Identification
|
2007.09314
|
https://arxiv.org/abs/2007.09314v1
|
https://arxiv.org/pdf/2007.09314v1.pdf
|
https://github.com/mangye16/DDAG
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/playing-chess-with-limited-look-ahead
|
Playing Chess with Limited Look Ahead
|
2007.02130
|
https://arxiv.org/abs/2007.02130v1
|
https://arxiv.org/pdf/2007.02130v1.pdf
|
https://github.com/ArmanMaesumi/LimitedLookAheadChess
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/Jitensid/Neural-Style-Transfer
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/graph-neural-network-for-traffic-forecasting
|
Graph Neural Network for Traffic Forecasting: A Survey
|
2101.11174
|
https://arxiv.org/abs/2101.11174v4
|
https://arxiv.org/pdf/2101.11174v4.pdf
|
https://github.com/zhiyongc/Seattle-Loop-Data
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/additive-noise-annealing-and-approximation
|
Additive Noise Annealing and Approximation Properties of Quantized Neural Networks
|
1905.10452
|
https://arxiv.org/abs/1905.10452v1
|
https://arxiv.org/pdf/1905.10452v1.pdf
|
https://github.com/spallanzanimatteo/QuantLab
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/geometric-anomaly-detection-in-data
|
Geometric anomaly detection in data
|
1908.09397
|
https://arxiv.org/abs/1908.09397v1
|
https://arxiv.org/pdf/1908.09397v1.pdf
|
https://github.com/stolzbernadette/Geometric-Anomalies
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fast-and-accurate-model-scaling
|
Fast and Accurate Model Scaling
|
2103.06877
|
https://arxiv.org/abs/2103.06877v1
|
https://arxiv.org/pdf/2103.06877v1.pdf
|
https://github.com/tuggeluk/pycls
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/exact-hard-monotonic-attention-for-character
|
Exact Hard Monotonic Attention for Character-Level Transduction
|
1905.06319
|
https://arxiv.org/abs/1905.06319v3
|
https://arxiv.org/pdf/1905.06319v3.pdf
|
https://github.com/AssafSinger94/sigmorphon-2020-inflection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/solving-large-scale-structure-in-ten-easy
|
Solving Large Scale Structure in Ten Easy Steps with COLA
|
1301.0322
|
https://arxiv.org/abs/1301.0322v1
|
https://arxiv.org/pdf/1301.0322v1.pdf
|
https://github.com/HAWinther/MG-PICOLA-PUBLIC
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/hierarchical-multi-head-attentive-network-for
|
Hierarchical Multi-head Attentive Network for Evidence-aware Fake News Detection
|
2102.02680
|
https://arxiv.org/abs/2102.02680v1
|
https://arxiv.org/pdf/2102.02680v1.pdf
|
https://github.com/nguyenvo09/EACL2021
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/objects-as-points
|
Objects as Points
|
1904.07850
|
http://arxiv.org/abs/1904.07850v2
|
http://arxiv.org/pdf/1904.07850v2.pdf
|
https://github.com/PingoLH/CenterNet-HarDNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hardnet-a-low-memory-traffic-network
|
HarDNet: A Low Memory Traffic Network
|
1909.00948
|
https://arxiv.org/abs/1909.00948v1
|
https://arxiv.org/pdf/1909.00948v1.pdf
|
https://github.com/PingoLH/CenterNet-HarDNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cross-domain-adaptation-of-spoken-language
|
Cross-Domain Adaptation of Spoken Language Identification for Related Languages: The Curious Case of Slavic Languages
|
2008.00545
|
https://arxiv.org/abs/2008.00545v2
|
https://arxiv.org/pdf/2008.00545v2.pdf
|
https://github.com/uds-lsv/da-lang-id
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/amortized-synthesis-of-constrained
|
Amortized Synthesis of Constrained Configurations Using a Differentiable Surrogate
|
2106.09019
|
https://arxiv.org/abs/2106.09019v2
|
https://arxiv.org/pdf/2106.09019v2.pdf
|
https://github.com/xingyuansun/amorsyn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-liver-tumor-segmentation-benchmark-lits
|
The Liver Tumor Segmentation Benchmark (LiTS)
|
1901.04056
|
https://arxiv.org/abs/1901.04056v2
|
https://arxiv.org/pdf/1901.04056v2.pdf
|
https://github.com/zz10001/LITS2017-main1
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-generative-network-for
|
Weakly Supervised Generative Network for Multiple 3D Human Pose Hypotheses
|
2008.05770
|
https://arxiv.org/abs/2008.05770v1
|
https://arxiv.org/pdf/2008.05770v1.pdf
|
https://github.com/chaneyddtt/weakly-supervised-3d-pose-generator
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/iterative-surrogate-model-optimization-ismo
|
Iterative Surrogate Model Optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
|
2008.05730
|
https://arxiv.org/abs/2008.05730v1
|
https://arxiv.org/pdf/2008.05730v1.pdf
|
https://github.com/kjetil-lye/iterative_surrogate_optimization
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lac-lstm-autoencoder-with-community-for
|
LAC : LSTM AUTOENCODER with Community for Insider Threat Detection
|
2008.05646
|
https://arxiv.org/abs/2008.05646v1
|
https://arxiv.org/pdf/2008.05646v1.pdf
|
https://github.com/smlab-niser/LAC
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/composition-based-crystal-materials-symmetry
|
Composition based crystal materials symmetry prediction using machine learning with enhanced descriptors
|
2105.07303
|
https://arxiv.org/abs/2105.07303v1
|
https://arxiv.org/pdf/2105.07303v1.pdf
|
https://github.com/usccolumbia/SG_predict
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/calculating-elements-of-matrix-functions
|
Calculating elements of matrix functions using divided differences
|
2107.14124
|
https://arxiv.org/abs/2107.14124v2
|
https://arxiv.org/pdf/2107.14124v2.pdf
|
https://github.com/LevBarash/MatrixFunctions
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/evaluating-protein-transfer-learning-with
|
Evaluating Protein Transfer Learning with TAPE
|
1906.08230
|
https://arxiv.org/abs/1906.08230v1
|
https://arxiv.org/pdf/1906.08230v1.pdf
|
https://github.com/googleinterns/protein-embedding-retrieval
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/contextual-lensing-of-universal-sentence
|
Contextual Lensing of Universal Sentence Representations
|
2002.08866
|
https://arxiv.org/abs/2002.08866v1
|
https://arxiv.org/pdf/2002.08866v1.pdf
|
https://github.com/googleinterns/protein-embedding-retrieval
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/fixed-length-protein-embeddings-using
|
Fixed-Length Protein Embeddings using Contextual Lenses
|
2010.15065
|
https://arxiv.org/abs/2010.15065v1
|
https://arxiv.org/pdf/2010.15065v1.pdf
|
https://github.com/googleinterns/protein-embedding-retrieval
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/beyond-outlier-detection-outlier
|
Beyond Outlier Detection: Outlier Interpretation by Attention-Guided Triplet Deviation Network
| null |
https://dl.acm.org/doi/10.1145/3442381.3449868
|
https://dl.acm.org/doi/10.1145/3442381.3449868
|
https://github.com/xuhongzuo/outlier-interpretation
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/spatialflow-bridging-all-tasks-for-panoptic
|
SpatialFlow: Bridging All Tasks for Panoptic Segmentation
|
1910.08787
|
https://arxiv.org/abs/1910.08787v3
|
https://arxiv.org/pdf/1910.08787v3.pdf
|
https://github.com/chensnathan/SpatialFlow
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/heuristics-for-inequality-minimization-in
|
Heuristics for Inequality minimization in PageRank values
|
2310.18537
|
https://arxiv.org/abs/2310.18537v2
|
https://arxiv.org/pdf/2310.18537v2.pdf
|
https://github.com/puzzlef/pagerank-minimize-inequality
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/predicting-radial-velocity-jitter-induced-by
|
Predicting radial-velocity jitter induced by stellar oscillations based on Kepler data
|
1807.00096
|
http://arxiv.org/abs/1807.00096v1
|
http://arxiv.org/pdf/1807.00096v1.pdf
|
https://github.com/Jieyu126/Jitter
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/echo-syncnet-self-supervised-cardiac-view
|
Echo-SyncNet: Self-supervised Cardiac View Synchronization in Echocardiography
|
2102.02287
|
https://arxiv.org/abs/2102.02287v1
|
https://arxiv.org/pdf/2102.02287v1.pdf
|
https://github.com/fatemehtd/Echo-SyncNet
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/trifinger-an-open-source-robot-for-learning
|
TriFinger: An Open-Source Robot for Learning Dexterity
|
2008.03596
|
https://arxiv.org/abs/2008.03596v2
|
https://arxiv.org/pdf/2008.03596v2.pdf
|
https://github.com/open-dynamic-robot-initiative/trifinger_simulation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/constructing-narrative-event-evolutionary
|
Constructing Narrative Event Evolutionary Graph for Script Event Prediction
|
1805.05081
|
http://arxiv.org/abs/1805.05081v2
|
http://arxiv.org/pdf/1805.05081v2.pdf
|
https://github.com/eecrazy/ConstructingNEEG_IJCAI_2018
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/kaleidoscope-an-efficient-learnable-1
|
Kaleidoscope: An Efficient, Learnable Representation For All Structured Linear Maps
|
2012.14966
|
https://arxiv.org/abs/2012.14966v2
|
https://arxiv.org/pdf/2012.14966v2.pdf
|
https://github.com/HazyResearch/learning-circuits
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/guidelines-for-responsible-and-human-centered
|
Proposed Guidelines for the Responsible Use of Explainable Machine Learning
|
1906.03533
|
https://arxiv.org/abs/1906.03533v3
|
https://arxiv.org/pdf/1906.03533v3.pdf
|
https://github.com/jphall663/hc_ml
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/srda-generating-instance-segmentation
|
SRDA: Generating Instance Segmentation Annotation Via Scanning, Reasoning And Domain Adaptation
|
1801.08839
|
http://arxiv.org/abs/1801.08839v3
|
http://arxiv.org/pdf/1801.08839v3.pdf
|
https://github.com/DirtyHarryLYL/SRDA-ECCV2018
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
|
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
|
1707.07998
|
http://arxiv.org/abs/1707.07998v3
|
http://arxiv.org/pdf/1707.07998v3.pdf
|
https://github.com/meiqiguo/iccv2021-atypicalitydetection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
|
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
|
1905.11946
|
https://arxiv.org/abs/1905.11946v5
|
https://arxiv.org/pdf/1905.11946v5.pdf
|
https://github.com/darya-baranovskaya/keyword_spotting
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/language-id-in-the-wild-unexpected-challenges
|
Language ID in the Wild: Unexpected Challenges on the Path to a Thousand-Language Web Text Corpus
|
2010.14571
|
https://arxiv.org/abs/2010.14571v2
|
https://arxiv.org/pdf/2010.14571v2.pdf
|
https://github.com/google-research-datasets/TF-IDF-IIF-top100-wordlists
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/ecapa-tdnn-for-multi-speaker-text-to-speech
|
ECAPA-TDNN for Multi-speaker Text-to-speech Synthesis
|
2203.10473
|
https://arxiv.org/abs/2203.10473v2
|
https://arxiv.org/pdf/2203.10473v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-50
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/efficient-clustering-based-on-a-unified-view
|
Efficient Clustering Based On A Unified View Of $K$-means And Ratio-cut
| null |
http://proceedings.neurips.cc/paper/2020/hash/aa108f56a10e75c1f20f27723ecac85f-Abstract.html
|
http://proceedings.neurips.cc/paper/2020/file/aa108f56a10e75c1f20f27723ecac85f-Paper.pdf
|
https://github.com/ShenfeiPei/KSUMS
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/r-markdown-integrating-a-reproducible
|
R Markdown: Integrating A Reproducible Analysis Tool into Introductory Statistics
|
1402.1894
|
https://arxiv.org/abs/1402.1894v1
|
https://arxiv.org/pdf/1402.1894v1.pdf
|
https://github.com/liibre/curso
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-to-adapt-structured-output-space-for
|
Learning to Adapt Structured Output Space for Semantic Segmentation
|
1802.10349
|
https://arxiv.org/abs/1802.10349v3
|
https://arxiv.org/pdf/1802.10349v3.pdf
|
https://github.com/buriedms/AdaptSegNet-Paddle
| false
| false
| true
|
paddle
|
https://paperswithcode.com/paper/identity-aware-multi-sentence-video
|
Identity-Aware Multi-Sentence Video Description
|
2008.09791
|
https://arxiv.org/abs/2008.09791v1
|
https://arxiv.org/pdf/2008.09791v1.pdf
|
https://github.com/jamespark3922/lsmdc-fillin
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lowfer-low-rank-bilinear-pooling-for-link
|
LowFER: Low-rank Bilinear Pooling for Link Prediction
|
2008.10858
|
https://arxiv.org/abs/2008.10858v1
|
https://arxiv.org/pdf/2008.10858v1.pdf
|
https://github.com/suamin/LowFER
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/revphiseg-a-memory-efficient-neural-network
|
RevPHiSeg: A Memory-Efficient Neural Network for Uncertainty Quantification in Medical Image Segmentation
|
2008.06999
|
https://arxiv.org/abs/2008.06999v2
|
https://arxiv.org/pdf/2008.06999v2.pdf
|
https://github.com/gigantenbein/UNet-Zoo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-reason-in-round-based-games-multi
|
Learning to Reason in Round-based Games: Multi-task Sequence Generation for Purchasing Decision Making in First-person Shooters
|
2008.05131
|
https://arxiv.org/abs/2008.05131v1
|
https://arxiv.org/pdf/2008.05131v1.pdf
|
https://github.com/derenlei/CS_Net
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/covid-19-data-analysis-and-forecasting
|
COVID-19 Data Analysis and Forecasting: Algeria and the World
|
2007.09755
|
https://arxiv.org/abs/2007.09755v2
|
https://arxiv.org/pdf/2007.09755v2.pdf
|
https://github.com/SamBelkacem/COVID19-Algeria-and-World-Dataset
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unsupervised-learning-of-particle-image
|
Unsupervised Learning of Particle Image Velocimetry
|
2007.14487
|
https://arxiv.org/abs/2007.14487v1
|
https://arxiv.org/pdf/2007.14487v1.pdf
|
https://github.com/erizmr/UnLiteFlowNet-PIV
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-ego-and-object-6-dof-motion-estimation
|
Robust Ego and Object 6-DoF Motion Estimation and Tracking
|
2007.13993
|
https://arxiv.org/abs/2007.13993v1
|
https://arxiv.org/pdf/2007.13993v1.pdf
|
https://github.com/halajun/multimot_track
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/xinggan-for-person-image-generation
|
XingGAN for Person Image Generation
|
2007.09278
|
https://arxiv.org/abs/2007.09278v1
|
https://arxiv.org/pdf/2007.09278v1.pdf
|
https://github.com/Ha0Tang/XingGAN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-match-distributions-for-domain
|
Learning to Match Distributions for Domain Adaptation
|
2007.10791
|
https://arxiv.org/abs/2007.10791v3
|
https://arxiv.org/pdf/2007.10791v3.pdf
|
https://github.com/jindongwang/transferlearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/shape-prior-deformation-for-categorical-6d
|
Shape Prior Deformation for Categorical 6D Object Pose and Size Estimation
|
2007.08454
|
https://arxiv.org/abs/2007.08454v1
|
https://arxiv.org/pdf/2007.08454v1.pdf
|
https://github.com/mentian/object-deformnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mixture-complexity-and-its-application-to
|
Mixture Complexity and Its Application to Gradual Clustering Change Detection
|
2007.07467
|
https://arxiv.org/abs/2007.07467v1
|
https://arxiv.org/pdf/2007.07467v1.pdf
|
https://github.com/ShunkiKyoya/MixtureComplexity
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/semi-siamese-training-for-shallow-face
|
Semi-Siamese Training for Shallow Face Learning
|
2007.08398
|
https://arxiv.org/abs/2007.08398v1
|
https://arxiv.org/pdf/2007.08398v1.pdf
|
https://github.com/dituu/Semi-Siamese-Training
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/patch-wise-attack-for-fooling-deep-neural
|
Patch-wise Attack for Fooling Deep Neural Network
|
2007.06765
|
https://arxiv.org/abs/2007.06765v3
|
https://arxiv.org/pdf/2007.06765v3.pdf
|
https://github.com/qilong-zhang/Patch-wise-iterative-attack
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/template-based-question-generation-from
|
Template-Based Question Generation from Retrieved Sentences for Improved Unsupervised Question Answering
|
2004.11892
|
https://arxiv.org/abs/2004.11892v1
|
https://arxiv.org/pdf/2004.11892v1.pdf
|
https://github.com/awslabs/unsupervised-qa
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/certifying-joint-adversarial-robustness-for
|
Certifying Joint Adversarial Robustness for Model Ensembles
|
2004.10250
|
https://arxiv.org/abs/2004.10250v1
|
https://arxiv.org/pdf/2004.10250v1.pdf
|
https://github.com/jonas-maj/ensemble-adversarial-robustness
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lrtd-long-range-temporal-dependency-based
|
LRTD: Long-Range Temporal Dependency based Active Learning for Surgical Workflow Recognition
|
2004.09845
|
https://arxiv.org/abs/2004.09845v2
|
https://arxiv.org/pdf/2004.09845v2.pdf
|
https://github.com/xmichelleshihx/AL-LRTD
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/simalign-high-quality-word-alignments-without
|
SimAlign: High Quality Word Alignments without Parallel Training Data using Static and Contextualized Embeddings
|
2004.08728
|
https://arxiv.org/abs/2004.08728v4
|
https://arxiv.org/pdf/2004.08728v4.pdf
|
https://github.com/masoudjs/simalign
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-novel-cnn-based-method-for-accurate-ship
|
A Novel CNN-based Method for Accurate Ship Detection in HR Optical Remote Sensing Images via Rotated Bounding Box
|
2004.07124
|
https://arxiv.org/abs/2004.07124v2
|
https://arxiv.org/pdf/2004.07124v2.pdf
|
https://github.com/lilinhao/ShipDetection
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/geomstats-a-python-package-for-riemannian-2
|
Geomstats: A Python Package for Riemannian Geometry in Machine Learning
|
2004.04667
|
https://arxiv.org/abs/2004.04667v1
|
https://arxiv.org/pdf/2004.04667v1.pdf
|
https://github.com/geomstats/geomstats
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-systematic-analysis-of-morphological
|
A Systematic Analysis of Morphological Content in BERT Models for Multiple Languages
|
2004.03032
|
https://arxiv.org/abs/2004.03032v1
|
https://arxiv.org/pdf/2004.03032v1.pdf
|
https://github.com/danedmiston/morphology_classifiers
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/self-supervised-viewpoint-learning-from-image
|
Self-Supervised Viewpoint Learning From Image Collections
|
2004.01793
|
https://arxiv.org/abs/2004.01793v1
|
https://arxiv.org/pdf/2004.01793v1.pdf
|
https://github.com/NVlabs/SSV
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/disentangling-and-unifying-graph-convolutions
|
Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition
|
2003.14111
|
https://arxiv.org/abs/2003.14111v2
|
https://arxiv.org/pdf/2003.14111v2.pdf
|
https://github.com/kenziyuliu/ms-g3d
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/real-time-detection-of-dictionary-dga-network
|
Real-Time Detection of Dictionary DGA Network Traffic using Deep Learning
|
2003.12805
|
https://arxiv.org/abs/2003.12805v1
|
https://arxiv.org/pdf/2003.12805v1.pdf
|
https://github.com/jinxmirror13/bilbo-bagging-hybrid
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/2003-13328
|
Strip Pooling: Rethinking Spatial Pooling for Scene Parsing
|
2003.13328
|
https://arxiv.org/abs/2003.13328v1
|
https://arxiv.org/pdf/2003.13328v1.pdf
|
https://github.com/Andrew-Qibin/SPNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/masked-face-recognition-dataset-and
|
Masked Face Recognition Dataset and Application
|
2003.09093
|
https://arxiv.org/abs/2003.09093v2
|
https://arxiv.org/pdf/2003.09093v2.pdf
|
https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/adversarial-texture-optimization-from-rgb-d
|
Adversarial Texture Optimization from RGB-D Scans
|
2003.08400
|
https://arxiv.org/abs/2003.08400v1
|
https://arxiv.org/pdf/2003.08400v1.pdf
|
https://github.com/hjwdzh/AdversarialTexture
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/covid-19-the-first-public-coronavirus-twitter
|
COVID-19: The First Public Coronavirus Twitter Dataset
|
2003.07372
|
https://arxiv.org/abs/2003.07372v1
|
https://arxiv.org/pdf/2003.07372v1.pdf
|
https://github.com/echen102/COVID-19-TweetIDs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/semantically-enriched-search-engine-for
|
Semantically-Enriched Search Engine for Geoportals: A Case Study with ArcGIS Online
|
2003.06561
|
https://arxiv.org/abs/2003.06561v1
|
https://arxiv.org/pdf/2003.06561v1.pdf
|
https://github.com/gengchenmai/arcgis-online-search-engine
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/caesar-source-finder-recent-developments-and
|
CAESAR source finder: recent developments and testing
|
1909.06116
|
https://arxiv.org/abs/1909.06116v1
|
https://arxiv.org/pdf/1909.06116v1.pdf
|
https://github.com/SKA-INAF/caesar
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/select-and-attend-towards-controllable
|
Select and Attend: Towards Controllable Content Selection in Text Generation
|
1909.04453
|
https://arxiv.org/abs/1909.04453v1
|
https://arxiv.org/pdf/1909.04453v1.pdf
|
https://github.com/chin-gyou/controllable-selection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/3dsiamesenet-to-analyze-brain-mri
|
3DSiameseNet to Analyze Brain MRI
|
1909.01098
|
https://arxiv.org/abs/1909.01098v1
|
https://arxiv.org/pdf/1909.01098v1.pdf
|
https://github.com/morphoboid/3D-SiameseNet
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/relation-aware-entity-alignment-for
|
Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs
|
1908.08210
|
https://arxiv.org/abs/1908.08210v1
|
https://arxiv.org/pdf/1908.08210v1.pdf
|
https://github.com/StephanieWyt/RDGCN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/190807836
|
PubLayNet: largest dataset ever for document layout analysis
|
1908.07836
|
https://arxiv.org/abs/1908.07836v1
|
https://arxiv.org/pdf/1908.07836v1.pdf
|
https://github.com/ibm-aur-nlp/PubLayNet
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/prosodic-phrase-alignment-for-machine-dubbing
|
Prosodic Phrase Alignment for Machine Dubbing
|
1908.07226
|
https://arxiv.org/abs/1908.07226v1
|
https://arxiv.org/pdf/1908.07226v1.pdf
|
https://github.com/alpoktem/MachineDub
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/videonavqa-bridging-the-gap-between-visual
|
VideoNavQA: Bridging the Gap between Visual and Embodied Question Answering
|
1908.04950
|
https://arxiv.org/abs/1908.04950v1
|
https://arxiv.org/pdf/1908.04950v1.pdf
|
https://github.com/catalina17/VideoNavQA
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/domain-specific-embedding-network-for-zero
|
Domain-Specific Embedding Network for Zero-Shot Recognition
|
1908.04174
|
https://arxiv.org/abs/1908.04174v1
|
https://arxiv.org/pdf/1908.04174v1.pdf
|
https://github.com/mboboGO/DSEN-for-GZSL
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/consensus-maximization-tree-search-revisited
|
Consensus Maximization Tree Search Revisited
|
1908.02021
|
https://arxiv.org/abs/1908.02021v3
|
https://arxiv.org/pdf/1908.02021v3.pdf
|
https://github.com/ZhipengCai/MaxConTreeSearch
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/blebeacon-a-real-subject-trial-dataset-from
|
BLEBeacon: A Real-Subject Trial Dataset from Mobile Bluetooth Low Energy Beacons
|
1802.08782
|
https://arxiv.org/abs/1802.08782v2
|
https://arxiv.org/pdf/1802.08782v2.pdf
|
https://github.com/dimisik/BLEBeacon-Dataset
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/biological-and-shortest-path-routing
|
Biological and Shortest-Path Routing Procedures for Transportation Network Design
|
1803.03528
|
http://arxiv.org/abs/1803.03528v1
|
http://arxiv.org/pdf/1803.03528v1.pdf
|
https://github.com/fqueyroi/tulip_plugins
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/viable-dependency-parsing-as-sequence
|
Viable Dependency Parsing as Sequence Labeling
|
1902.10505
|
http://arxiv.org/abs/1902.10505v2
|
http://arxiv.org/pdf/1902.10505v2.pdf
|
https://github.com/mstrise/dep2label
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-state-of-sparsity-in-deep-neural-networks
|
The State of Sparsity in Deep Neural Networks
|
1902.09574
|
http://arxiv.org/abs/1902.09574v1
|
http://arxiv.org/pdf/1902.09574v1.pdf
|
https://github.com/ars-ashuha/variational-dropout-sparsifies-dnn
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/from-dark-matter-to-galaxies-with
|
From Dark Matter to Galaxies with Convolutional Networks
|
1902.05965
|
http://arxiv.org/abs/1902.05965v2
|
http://arxiv.org/pdf/1902.05965v2.pdf
|
https://github.com/xz2139/From-Dark-Matter-to-Galaxies-with-Convolutional-Networks
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/forensic-similarity-for-digital-images
|
Forensic Similarity for Digital Images
|
1902.04684
|
https://arxiv.org/abs/1902.04684v2
|
https://arxiv.org/pdf/1902.04684v2.pdf
|
https://gitlab.com/MISLgit/forensic-similarity-for-digital-images
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/out-of-sample-testing-for-gans
|
Out-of-Sample Testing for GANs
|
1901.09557
|
http://arxiv.org/abs/1901.09557v1
|
http://arxiv.org/pdf/1901.09557v1.pdf
|
https://github.com/psanch21/EvalGAN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/active-learning-with-gaussian-processes-for
|
Active Learning with Gaussian Processes for High Throughput Phenotyping
|
1901.06803
|
http://arxiv.org/abs/1901.06803v1
|
http://arxiv.org/pdf/1901.06803v1.pdf
|
https://github.com/sumitsk/algp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/domain-adaptation-for-semg-based-gesture
|
Domain Adaptation for sEMG-based Gesture Recognition with Recurrent Neural Networks
|
1901.06958
|
https://arxiv.org/abs/1901.06958v2
|
https://arxiv.org/pdf/1901.06958v2.pdf
|
https://github.com/ketyi/2SRNN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/metadata-embeddings-for-user-and-item-cold
|
Metadata Embeddings for User and Item Cold-start Recommendations
|
1507.08439
|
http://arxiv.org/abs/1507.08439v1
|
http://arxiv.org/pdf/1507.08439v1.pdf
|
https://github.com/lyst/lightfm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/image-super-resolution-using-very-deep
|
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
|
1807.02758
|
http://arxiv.org/abs/1807.02758v2
|
http://arxiv.org/pdf/1807.02758v2.pdf
|
https://github.com/yulunzhang/RCAN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/steganalysis-via-a-convolutional-neural
|
Steganalysis via a Convolutional Neural Network using Large Convolution Filters for Embedding Process with Same Stego Key
|
1605.07946
|
http://arxiv.org/abs/1605.07946v3
|
http://arxiv.org/pdf/1605.07946v3.pdf
|
https://github.com/rcouturier/steganalysis_with_deep_learning
| true
| true
| true
|
torch
|
https://paperswithcode.com/paper/knowledge-matters-importance-of-prior
|
Knowledge Matters: Importance of Prior Information for Optimization
|
1301.4083
|
http://arxiv.org/abs/1301.4083v6
|
http://arxiv.org/pdf/1301.4083v6.pdf
|
https://github.com/caglar/structured_mlp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/off-policy-general-value-functions-to
|
Off-Policy General Value Functions to Represent Dynamic Role Assignments in RoboCup 3D Soccer Simulation
|
1402.4525
|
http://arxiv.org/abs/1402.4525v1
|
http://arxiv.org/pdf/1402.4525v1.pdf
|
https://github.com/samindaa/RLLib
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/echoes-of-persuasion-the-effect-of-euphony-in
|
Echoes of Persuasion: The Effect of Euphony in Persuasive Communication
|
1508.05817
|
http://arxiv.org/abs/1508.05817v1
|
http://arxiv.org/pdf/1508.05817v1.pdf
|
https://github.com/marcoguerini/paired_datasets_for_persuasion
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/an-ensemble-method-to-produce-high-quality
|
An Ensemble Method to Produce High-Quality Word Embeddings (2016)
|
1604.01692
|
https://arxiv.org/abs/1604.01692v2
|
https://arxiv.org/pdf/1604.01692v2.pdf
|
https://github.com/LuminosoInsight/conceptnet-vector-ensemble
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/orientation-driven-bag-of-appearances-for
|
Orientation Driven Bag of Appearances for Person Re-identification
|
1605.02464
|
http://arxiv.org/abs/1605.02464v1
|
http://arxiv.org/pdf/1605.02464v1.pdf
|
https://github.com/charliememory/PKU-Reid-Dataset
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/wide-deep-learning-for-recommender-systems
|
Wide & Deep Learning for Recommender Systems
|
1606.07792
|
http://arxiv.org/abs/1606.07792v1
|
http://arxiv.org/pdf/1606.07792v1.pdf
|
https://github.com/fengtong-xiao/DMBGN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/intraoperative-margin-assessment-of-human
|
Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks
|
1703.10827
|
http://arxiv.org/abs/1703.10827v1
|
http://arxiv.org/pdf/1703.10827v1.pdf
|
https://github.com/AmalRT/DNN_Reg
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/stick-breaking-variational-autoencoders
|
Stick-Breaking Variational Autoencoders
|
1605.06197
|
http://arxiv.org/abs/1605.06197v3
|
http://arxiv.org/pdf/1605.06197v3.pdf
|
https://github.com/enalisnick/stick-breaking_dgms
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/msht-multi-stage-hybrid-transformer-for-the
|
MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer
|
2112.13513
|
https://arxiv.org/abs/2112.13513v1
|
https://arxiv.org/pdf/2112.13513v1.pdf
|
https://github.com/sagizty/multi-stage-hybrid-transformer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/expressive-explanations-of-dnns-by-combining
|
Expressive Explanations of DNNs by Combining Concept Analysis with ILP
|
2105.07371
|
https://arxiv.org/abs/2105.07371v1
|
https://arxiv.org/pdf/2105.07371v1.pdf
|
https://github.com/mc-lovin-mlem/concept-embeddings-and-ilp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/iteratively-trained-interactive-segmentation
|
Iteratively Trained Interactive Segmentation
|
1805.04398
|
http://arxiv.org/abs/1805.04398v1
|
http://arxiv.org/pdf/1805.04398v1.pdf
|
https://github.com/sabarim/itis
| true
| false
| false
|
tf
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.