test / ov_catvton_helper.py
tejani's picture
Upload 4 files
9ff9d53 verified
import gc
import os
from collections import namedtuple
from pathlib import Path
import warnings
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from huggingface_hub import snapshot_download
import yaml
import openvino as ov
import torch
from model.cloth_masker import AutoMasker
from model.pipeline import CatVTONPipeline
MODEL_DIR = Path("models")
VAE_ENCODER_PATH = MODEL_DIR / "vae_encoder.xml"
VAE_DECODER_PATH = MODEL_DIR / "vae_decoder.xml"
UNET_PATH = MODEL_DIR / "unet.xml"
DENSEPOSE_PROCESSOR_PATH = MODEL_DIR / "densepose_processor.xml"
SCHP_PROCESSOR_ATR = MODEL_DIR / "schp_processor_atr.xml"
SCHP_PROCESSOR_LIP = MODEL_DIR / "schp_processor_lip.xml"
def convert(model: torch.nn.Module, xml_path: str, example_input):
xml_path = Path(xml_path)
if not xml_path.exists():
xml_path.parent.mkdir(parents=True, exist_ok=True)
model.eval()
with torch.no_grad():
converted_model = ov.convert_model(model, example_input=example_input)
ov.save_model(converted_model, xml_path)
# cleanup memory
torch._C._jit_clear_class_registry()
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
torch.jit._state._clear_class_state()
class VaeEncoder(torch.nn.Module):
def __init__(self, vae):
super().__init__()
self.vae = vae
def forward(self, x):
return {"latent_parameters": self.vae.encode(x)["latent_dist"].parameters}
class VaeDecoder(torch.nn.Module):
def __init__(self, vae):
super().__init__()
self.vae = vae
def forward(self, latents):
return self.vae.decode(latents)
class UNetWrapper(torch.nn.Module):
def __init__(self, unet):
super().__init__()
self.unet = unet
def forward(self, sample=None, timestep=None, encoder_hidden_states=None, return_dict=None):
result = self.unet(sample=sample, timestep=timestep, encoder_hidden_states=encoder_hidden_states, return_dict=False)
return result
def download_models():
resume_path = "zhengchong/CatVTON"
base_model_path = "booksforcharlie/stable-diffusion-inpainting"
repo_path = snapshot_download(repo_id=resume_path, local_dir=MODEL_DIR)
pipeline = CatVTONPipeline(base_ckpt=base_model_path, attn_ckpt=repo_path, attn_ckpt_version="mix", use_tf32=True, device="cpu")
# fix default config to use cpu
with open(f"{repo_path}/DensePose/densepose_rcnn_R_50_FPN_s1x.yaml", "r") as fp:
data = yaml.safe_load(fp)
data["MODEL"].update({"DEVICE": "cpu"})
with open(f"{repo_path}/DensePose/densepose_rcnn_R_50_FPN_s1x.yaml", "w") as fp:
yaml.safe_dump(data, fp)
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device="cpu",
)
return pipeline, mask_processor, automasker
def convert_pipeline_models(pipeline):
convert(VaeEncoder(pipeline.vae), VAE_ENCODER_PATH, torch.zeros(1, 3, 1024, 768))
convert(VaeDecoder(pipeline.vae), VAE_DECODER_PATH, torch.zeros(1, 4, 128, 96))
del pipeline.vae
inpainting_latent_model_input = torch.rand(2, 9, 256, 96)
timestep = torch.tensor(0)
encoder_hidden_states = torch.Tensor(0)
example_input = (inpainting_latent_model_input, timestep, encoder_hidden_states)
convert(UNetWrapper(pipeline.unet), UNET_PATH, example_input)
del pipeline.unet
gc.collect()
def convert_automasker_models(automasker):
from detectron2.export import TracingAdapter # it's detectron2 from CatVTON repo
def inference(model, inputs):
# use do_postprocess=False so it returns ROI mask
inst = model.inference(inputs, do_postprocess=False)[0]
return [{"instances": inst}]
tracing_input = [{"image": torch.rand([3, 800, 800], dtype=torch.float32)}]
warnings.filterwarnings("ignore")
traceable_model = TracingAdapter(automasker.densepose_processor.predictor.model, tracing_input, inference)
convert(traceable_model, DENSEPOSE_PROCESSOR_PATH, tracing_input[0]["image"])
del automasker.densepose_processor.predictor.model
convert(automasker.schp_processor_atr.model, SCHP_PROCESSOR_ATR, torch.rand([1, 3, 512, 512], dtype=torch.float32))
convert(automasker.schp_processor_lip.model, SCHP_PROCESSOR_LIP, torch.rand([1, 3, 473, 473], dtype=torch.float32))
del automasker.schp_processor_atr.model
del automasker.schp_processor_lip.model
gc.collect()
class VAEWrapper(torch.nn.Module):
def __init__(self, vae_encoder, vae_decoder, scaling_factor):
super().__init__()
self.vae_enocder = vae_encoder
self.vae_decoder = vae_decoder
self.device = "cpu"
self.dtype = torch.float32
self.config = namedtuple("VAEConfig", ["scaling_factor"])(scaling_factor)
def encode(self, pixel_values):
ov_outputs = self.vae_enocder(pixel_values).to_dict()
model_outputs = {}
for key, value in ov_outputs.items():
model_outputs[next(iter(key.names))] = torch.from_numpy(value)
result = namedtuple("VAE", "latent_dist")(DiagonalGaussianDistribution(parameters=model_outputs.pop("latent_parameters")))
return result
def decode(self, latents):
outs = self.vae_decoder(latents)
outs = namedtuple("VAE", "sample")(torch.from_numpy(outs[0]))
return outs
class ConvUnetWrapper(torch.nn.Module):
def __init__(self, unet):
super().__init__()
self.unet = unet
def forward(self, sample, timestep, encoder_hidden_states=None, **kwargs):
outputs = self.unet(
{
"sample": sample,
"timestep": timestep,
},
)
return [torch.from_numpy(outputs[0])]
class ConvDenseposeProcessorWrapper(torch.nn.Module):
def __init__(self, densepose_processor):
super().__init__()
self.densepose_processor = densepose_processor
def forward(self, sample, **kwargs):
from detectron2.structures import Instances, Boxes # it's detectron2 from CatVTON repo
outputs = self.densepose_processor(sample[0]["image"])
boxes = outputs[0]
classes = outputs[1]
has_mask = len(outputs) >= 5
scores = outputs[2 if not has_mask else 3]
print(scores)
model_input_size = (
int(outputs[3 if not has_mask else 4][0]),
int(outputs[3 if not has_mask else 4][1]),
)
filtered_detections = scores >= 0
boxes = Boxes(boxes[filtered_detections])
scores = scores[filtered_detections]
classes = classes[filtered_detections]
out_dict = {"pred_boxes": boxes, "scores": scores, "pred_classes": classes}
instances = Instances(model_input_size, **out_dict)
return [{"instances": instances}]
class ConvSchpProcessorWrapper(torch.nn.Module):
def __init__(self, schp_processor):
super().__init__()
self.schp_processor = schp_processor
def forward(self, image):
outputs = self.schp_processor(image)
return torch.from_numpy(outputs[0])
def get_compiled_pipeline(pipeline, core, device, vae_encoder_path, vae_decoder_path, unet_path, vae_scaling_factor):
compiled_unet = core.compile_model(unet_path, device.value)
compiled_vae_encoder = core.compile_model(vae_encoder_path, device.value)
compiled_vae_decoder = core.compile_model(vae_decoder_path, device.value)
pipeline.vae = VAEWrapper(compiled_vae_encoder, compiled_vae_decoder, vae_scaling_factor)
pipeline.unet = ConvUnetWrapper(compiled_unet)
return pipeline
def get_compiled_automasker(automasker, core, device, densepose_processor_path, schp_processor_atr_path, schp_processor_lip_path):
compiled_densepose_processor = core.compile_model(densepose_processor_path, device.value)
compiled_schp_processor_atr = core.compile_model(schp_processor_atr_path, device.value)
compiled_schp_processor_lip = core.compile_model(schp_processor_lip_path, device.value)
automasker.densepose_processor.predictor.model = ConvDenseposeProcessorWrapper(compiled_densepose_processor)
automasker.schp_processor_atr.model = ConvSchpProcessorWrapper(compiled_schp_processor_atr)
automasker.schp_processor_lip.model = ConvSchpProcessorWrapper(compiled_schp_processor_lip)
return automasker
def get_pipeline_selection_option(is_optimized_pipe_available=False):
import ipywidgets as widgets
use_quantized_models = widgets.Checkbox(
value=is_optimized_pipe_available,
description="Use quantized models",
disabled=not is_optimized_pipe_available,
)
return use_quantized_models