|
|
---
|
|
|
license: cc-by-4.0
|
|
|
task_categories:
|
|
|
- visual-question-answering
|
|
|
language:
|
|
|
- en
|
|
|
tags:
|
|
|
- multimodal large language models
|
|
|
- face perception
|
|
|
---
|
|
|
|
|
|
# FaceBench Dataset |
|
|
- **Paper:** https://ieeexplore.ieee.org/document/11092731 |
|
|
- **Repository:** https://github.com/CVI-SZU/FaceBench |
|
|
- **Face-LLaVA:** https://huggingface.co/wxqlab/face-llava-v1.5-13b |
|
|
|
|
|
## Dataset Summary |
|
|
|
|
|
We release the FaceBench dataset, which consists of 49,919 visual question-answering (VQA) pairs for evaluation and 23,841 pairs for fine-tuning. |
|
|
FaceBench is built upon a hierarchical facial attribute structure, which encompasses five views with up to three levels of attributes, totaling over 210 attributes and 700 attribute values. |
|
|
|
|
|
## Dataset Example |
|
|
```json |
|
|
{ |
|
|
"question_id": "beard_q0", |
|
|
"question_type": "TFQ", |
|
|
"image_id": "test-CelebA-HQ-1279.jpg", |
|
|
"text": "Does the person in the image have a beard?", |
|
|
"instruction": "Please directly select the appropriate option from the given choices based on the image.", "options": ["Yes", "No", "Information not visible"], |
|
|
"conditions": {"option Y": ["beard_q1", "beard_q2", "beard_q3", "beard_q4"], "option N": []}, |
|
|
"gt_answer": "Yes", |
|
|
"metadata": {"image_source": "CelebA-HQ", "view": "Appearance", "attribute_level": "level 1"} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
``` |
|
|
@inproceedings{wang2025facebench, |
|
|
title={FaceBench: A Multi-View Multi-Level Facial Attribute VQA Dataset for Benchmarking Face Perception MLLMs}, |
|
|
author={Wang, Xiaoqin and Ma, Xusen and Hou, Xianxu and Ding, Meidan and Li, Yudong and Chen, Junliang and Chen, Wenting and Peng, Xiaoyang and Shen, Linlin}, |
|
|
booktitle={Proceedings of the Computer Vision and Pattern Recognition Conference}, |
|
|
pages={9154--9164}, |
|
|
year={2025} |
|
|
} |
|
|
``` |