Spaces:
Running
Running
File size: 7,692 Bytes
1a0a3d9 5d9caf3 1a0a3d9 2b1ee7e 1a0a3d9 77840d0 4ad0ec1 1a0a3d9 77840d0 38d8cee 77840d0 38d8cee 77840d0 38d8cee 77840d0 38d8cee 77840d0 38d8cee 77840d0 38d8cee 77840d0 38d8cee 77840d0 38d8cee 77840d0 38d8cee 77840d0 38d8cee 77840d0 38d8cee a8ba472 38d8cee a8ba472 38d8cee a8ba472 77840d0 38d8cee 42be625 38d8cee a8ba472 38d8cee 77840d0 38d8cee a8ba472 38d8cee a8ba472 38d8cee a8ba472 38d8cee 1a0a3d9 77840d0 1a0a3d9 0ca9e64 77840d0 1a0a3d9 77840d0 38d8cee 1a0a3d9 77840d0 1a0a3d9 77840d0 1a0a3d9 77840d0 1a0a3d9 77840d0 1a0a3d9 77840d0 1a0a3d9 77840d0 1a0a3d9 77840d0 1a0a3d9 77840d0 38d8cee 1a0a3d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import sentencepiece as spm
import gradio as gr
import requests
import os
# ----------------------
# 파일 다운로드 유틸
# ----------------------
def download_file(url, save_path):
r = requests.get(url, stream=True)
r.raise_for_status()
with open(save_path, "wb") as f:
for chunk in r.iter_content(8192*2):
f.write(chunk)
print(f"✅ {save_path} 저장됨")
MODEL_PATH = "encoder.weights.h5"
TOKENIZER_PATH = "bpe.model"
if not os.path.exists(MODEL_PATH):
download_file(
"https://huggingface.co/OpenLab-NLP/openlem2/resolve/main/encoder_fit.weights.h5?download=true",
MODEL_PATH
)
if not os.path.exists(TOKENIZER_PATH):
download_file(
"https://huggingface.co/OpenLab-NLP/openlem2/resolve/main/bpe.model?download=true",
TOKENIZER_PATH
)
MAX_LEN = 384
EMBED_DIM = 512
LATENT_DIM = 512
BATCH_SIZE = 768 # global batch size (Keras/TPU가 replica-wise로 나눠서 처리)
EPOCHS = 1
SHUFFLE_BUFFER = 200000
LEARNING_RATE = 1e-4
TEMPERATURE = 0.05
DROPOUT_AUG = 0.1
EMBED_DROPOUT = 0.1
SEED = 42
DROPOUT_AUG = 0.1
EMBED_DROPOUT = 0.1
# ===============================
# 1️⃣ 토크나이저 로딩
# ===============================
sp = spm.SentencePieceProcessor(TOKENIZER_PATH)
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
vocab_size = sp.get_piece_size()
def encode_sentence(sentence, max_len=MAX_LEN):
return sp.encode(sentence, out_type=int)[:max_len]
def pad_sentence(tokens):
return tokens + [pad_id]*(MAX_LEN - len(tokens))
class DynamicConv(layers.Layer):
def __init__(self, d_model, k=7):
super().__init__()
assert k % 2 == 1
self.k = k
self.dense = layers.Dense(d_model, activation='silu')
self.proj = layers.Dense(d_model)
self.generator = layers.Dense(k, dtype='float32')
def call(self, x):
x_in = x
x = tf.cast(x, tf.float32)
B = tf.shape(x)[0]
L = tf.shape(x)[1]
D = tf.shape(x)[2]
kernels = self.generator(self.dense(x))
kernels = tf.nn.softmax(kernels, axis=-1)
pad = (self.k - 1) // 2
x_pad = tf.pad(x, [[0,0],[pad,pad],[0,0]])
x_pad_4d = tf.expand_dims(x_pad, axis=1)
patches = tf.image.extract_patches(
images=x_pad_4d,
sizes=[1,1,self.k,1],
strides=[1,1,1,1],
rates=[1,1,1,1],
padding='VALID'
)
patches = tf.reshape(patches, [B, L, self.k, D])
kernels_exp = tf.expand_dims(kernels, axis=-1)
out = tf.reduce_sum(patches * kernels_exp, axis=2)
out = self.proj(out)
# 🔥 원래 dtype으로 돌려줌
return tf.cast(out, x_in.dtype)
class EncoderBlock(tf.keras.layers.Layer):
def __init__(self, embed_dim=EMBED_DIM, ff_dim=1152, seq_len=MAX_LEN, num_conv_layers=2):
super().__init__()
self.embed_dim = embed_dim
self.seq_len = seq_len
# MLP / FFN
self.fc1 = layers.Dense(ff_dim)
self.fc2 = layers.Dense(embed_dim)
self.blocks = [DynamicConv(d_model=embed_dim, k=7) for _ in range(num_conv_layers)]
# LayerNorm
self.ln = layers.LayerNormalization(epsilon=1e-5) # 입력 정규화
self.ln1 = layers.LayerNormalization(epsilon=1e-5) # Conv residual
self.ln2 = layers.LayerNormalization(epsilon=1e-5) # FFN residual
def call(self, x, mask=None):
# 입력 정규화
x_norm = self.ln(x)
# DynamicConv 여러 층 통과
out = x_norm
for block in self.blocks: out = block(out)
# Conv residual 연결
x = x_norm + self.ln1(out)
# FFN / GLU
v = out
h = self.fc1(v)
g, v_split = tf.split(h, 2, axis=-1)
h = tf.nn.silu(g) * v_split
h = self.fc2(h)
# FFN residual 연결
x = x + self.ln2(h)
return x
class L2NormLayer(layers.Layer):
def __init__(self, axis=1, epsilon=1e-10, **kwargs):
super().__init__(**kwargs)
self.axis = axis
self.epsilon = epsilon
def call(self, inputs):
return tf.math.l2_normalize(inputs, axis=self.axis, epsilon=self.epsilon)
class SentenceEncoder(tf.keras.Model):
def __init__(self, vocab_size, embed_dim=EMBED_DIM, latent_dim=LATENT_DIM, max_len=MAX_LEN, pad_id=pad_id, dropout_rate=EMBED_DROPOUT):
super().__init__()
self.pad_id = pad_id
self.embed = layers.Embedding(vocab_size, embed_dim)
self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim)
self.dropout = layers.Dropout(dropout_rate)
self.blocks = [EncoderBlock() for _ in range(2)]
self.attn_pool = layers.Dense(1)
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
self.latent = layers.Dense(latent_dim, activation=None)
self.l2norm = L2NormLayer(axis=1)
def call(self, x, training=None):
positions = tf.range(tf.shape(x)[1])[tf.newaxis, :]
x_embed = self.embed(x) + self.pos_embed(positions)
x_embed = self.dropout(x_embed, training=training)
mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32)
h = x_embed
for block in self.blocks:
h = block(h, training=training)
h = self.ln_f(h)
# 🔥 scores를 float32 강제
scores = self.attn_pool(h)
scores = tf.cast(scores, tf.float32)
scores = tf.where(mask[..., tf.newaxis] == 0, tf.constant(-1e9, tf.float32), scores)
scores = tf.nn.softmax(scores, axis=1)
pooled = tf.reduce_sum(h * scores, axis=1)
latent = self.latent(pooled)
latent = self.l2norm(latent)
# 🔥 출력만 float32
return tf.cast(latent, tf.float32)
# 3️⃣ 모델 로드
# ===============================
encoder = SentenceEncoder(vocab_size=vocab_size)
encoder(np.zeros((1, MAX_LEN), dtype=np.int32)) # 모델 빌드
encoder.load_weights(MODEL_PATH)
# ===============================
# 4️⃣ 벡터화 함수
# ===============================
def get_sentence_vector(sentence):
tokens = pad_sentence(encode_sentence(sentence))
vec = encoder(np.array([tokens])).numpy()[0]
return vec / np.linalg.norm(vec)
# ===============================
# 5️⃣ 가장 비슷한 문장 찾기
# ===============================
def find_most_similar(query, s1, s2, s3):
candidates = [s1, s2, s3]
candidate_vectors = np.stack([get_sentence_vector(c) for c in candidates]).astype(np.float32)
query_vector = get_sentence_vector(query)
sims = candidate_vectors @ query_vector # cosine similarity
top_idx = np.argmax(sims)
return {
"가장 비슷한 문장": candidates[top_idx],
"유사도": float(sims[top_idx])
}
# ===============================
# 6️⃣ Gradio UI
# ===============================
with gr.Blocks() as demo:
gr.Markdown("## 🔍 문장 유사도 검색기 (쿼리 1개 + 후보 3개)")
with gr.Row():
query_input = gr.Textbox(label="검색할 문장 (Query)", placeholder="여기에 입력")
with gr.Row():
s1_input = gr.Textbox(label="검색 후보 1")
s2_input = gr.Textbox(label="검색 후보 2")
s3_input = gr.Textbox(label="검색 후보 3")
output = gr.JSON(label="결과")
search_btn = gr.Button("가장 비슷한 문장 찾기")
search_btn.click(
fn=find_most_similar,
inputs=[query_input, s1_input, s2_input, s3_input],
outputs=output
)
demo.launch() |