Textilindo-AI / README.md
harismlnaslm's picture
Fix short_description length in README.md
9a3240f
metadata
title: Textilindo AI Assistant
emoji: πŸ€–
colorFrom: blue
colorTo: green
sdk: docker
sdk_version: 4.0.0
app_file: app.py
pinned: false
license: mit
short_description: AI Assistant for Textilindo textile company

πŸ€– Textilindo AI Assistant

An intelligent AI assistant for Textilindo textile company with advanced training capabilities, built with FastAPI and Hugging Face Transformers.

✨ Features

  • Intelligent Chat Interface: Natural language conversations in Indonesian
  • Company Knowledge: Trained on Textilindo's specific information
  • Model Training: Train custom models with your data
  • Fast Response: Optimized for quick customer service
  • Mobile Friendly: Responsive web interface
  • API Ready: RESTful API for integration

πŸš€ Quick Start

Chat Interface

Visit the main page to start chatting with the AI assistant. Ask questions about:

  • Company location and hours
  • Product information
  • Ordering and shipping
  • Sample requests
  • Pricing and terms

Training API

Start Training

curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/api/train/start" \
  -H "Content-Type: application/json" \
  -d '{
    "model_name": "distilgpt2",
    "dataset_path": "data/lora_dataset_20250910_145055.jsonl",
    "config_path": "configs/training_config.yaml",
    "max_samples": 10,
    "epochs": 1,
    "batch_size": 1,
    "learning_rate": 5e-5
  }'

Check Training Status

curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/status"

Test Trained Model

curl -X POST "https://harismlnaslm-Textilindo-AI.hf.space/api/train/test"

Get Training Data Info

curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/data"

Check GPU Availability

curl "https://harismlnaslm-Textilindo-AI.hf.space/api/train/gpu"

πŸ› οΈ Technical Details

Architecture

  • Framework: FastAPI with Uvicorn
  • AI Model: Llama 3.1 8B Instruct (via Hugging Face)
  • Training: PyTorch with Transformers
  • Language: Indonesian (Bahasa Indonesia)
  • Deployment: Docker on Hugging Face Spaces

API Endpoints

Chat Endpoints

  • GET / - Main chat interface
  • POST /chat - Chat API endpoint
  • GET /health - Health check
  • GET /info - Application information

Training Endpoints

  • POST /api/train/start - Start model training
  • GET /api/train/status - Check training progress
  • GET /api/train/data - Get training data information
  • GET /api/train/gpu - Check GPU availability
  • POST /api/train/test - Test trained model

Environment Variables

Set these in your space settings:

# Required: Hugging Face API Key
HUGGINGFACE_API_KEY=your_api_key_here

# Optional: Model selection
DEFAULT_MODEL=meta-llama/Llama-3.1-8B-Instruct

πŸ“ž Support

For technical issues:

  1. Check the /health endpoint
  2. Review space logs
  3. Verify environment variables
  4. Test with mock responses

Built with ❀️ for Textilindo customers